1
|
Kougias DG, Southall MD, Scialli AR, Atillasoy E, Ejaz S, Schaeffer TH, Chu C, Jeminiwa BO, Massarsky A, Unice KM, Kovochich M. A quantitative weight-of-evidence review of preclinical studies examining the potential developmental and reproductive toxicity of acetaminophen. Crit Rev Toxicol 2025; 55:179-226. [PMID: 39982149 DOI: 10.1080/10408444.2024.2446471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 02/22/2025]
Abstract
We previously developed a quantitative weight-of-evidence (QWoE) framework using prespecified scoring criteria for preclinical acetaminophen data to characterize potential developmental neurotoxicity outcomes with considerations for biological relevance of the response to adverse outcomes and the strength of methods and study design. The current analysis uses this framework to characterize potential developmental and reproductive toxicity (DART) outcomes following exposure to acetaminophen. Two-hundred forty-two QWoE entries were documented from in vivo rodent studies identified in 110 publications across five categories: DART endpoints in the context of (1) periadolescent/adulthood (nonpregnancy) exposures; (2) pregnant female exposures; and, for in utero or other developmental exposures, (3) anatomical abnormalities, (4) reproductive development, and (5) other physical development. A mean outcome score and methods score were calculated for 242 QWoE entries. Data analyzed in our framework were of moderate quality showing no consistent evidence of DART in male and female rodents following exposure to acetaminophen at therapeutic and/or non-systemically toxic doses. Similar results were found for the individual context- and outcome-related endpoint analyses and as segregated by sex. Overall, this QWoE analysis on the in vivo rodent data demonstrated no consistent evidence of adverse effects following exposure to therapeutic and/or non-systemically toxic acetaminophen on development or on the structure and function of the reproductive system.
Collapse
Affiliation(s)
| | | | | | - Evren Atillasoy
- Kenvue Medical Clinical and Safety Sciences, Fort Washington, PA, USA
| | - Sadaff Ejaz
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | - Christopher Chu
- Kenvue Medical Clinical and Safety Sciences, Skillman, NJ, USA
| | | | | | | | | |
Collapse
|
2
|
Moura KF, Silva DGD, Vidigal CB, Silva GSSE, Pinto IC, Simão ANC, Marques BVD, Andrade FGD, Casagrande R, Gerardin DCC, Akamine EH, Franco MDCP, Ceravolo GS. Vascular dysfunction programmed in male rats by topiramate during peripubertal period. Life Sci 2024; 343:122488. [PMID: 38428573 DOI: 10.1016/j.lfs.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 03/03/2024]
Abstract
AIM The present study evaluated whether topiramate (TPM) treatment during the peripubertal period affects vascular parameters of male rats and whether oxidative stress plays a role in these changes. MAIN METHODS Rats were treated with TPM (41 mg/kg/day, gavage) or vehicle (CTR group) from the postnatal day (PND) 28 to 50. At PND 51 and 120 the rats were evaluated for: thoracic aorta reactivity to phenylephrine, in the presence (Endo+) or absence of endothelium (Endo-), to acetylcholine and to sodium nitroprusside (SNP), aortic thickness and endothelial nitric oxide synthase (eNOS) expression. In serum were analyzed: the antioxidant capacity by ferric reducing antioxidant power assay; endogenous antioxidant reduced glutathione, and superoxide anion. Results were expressed as mean ± s.e.m., differences when p < 0.05. STATISTICS Two-way ANOVA (and Tukey's) or Student t-test. KEY FINDINGS At PND 51, the contraction induced by phenylephrine in Endo+ ring was higher in TPM when compared to CTR. At PND 120, the aortic sensitivity to acetylcholine in TPM rats was reduced in comparison with CTR. The aortic eNOs expression and the aortic thickness were similar between the groups. At PND 51 and 120, TPM group presented a decrease in antioxidants when compared to CTR groups and at PND 120, in TPM group the superoxide anion was increased. SIGNIFICANCE Taken together, the treatment of rats with TPM during peripubertal period promoted permanent impairment of endothelial function probably mediated by oxidative stress.
Collapse
Affiliation(s)
- Kawane F Moura
- Graduation Program in Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Brazil
| | - Deborah Gomes da Silva
- Graduation Program in Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Brazil
| | - Camila Borecki Vidigal
- Graduation Program in Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Brazil
| | - Gabriel Smolak Sobieski E Silva
- Graduation Program in Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Brazil; Department of Histology, State University of Londrina, Brazil
| | | | | | - Bruno V D Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Fábio Goulart de Andrade
- Graduation Program in Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Brazil; Department of Histology, State University of Londrina, Brazil
| | - Rúbia Casagrande
- Department of Pharmaceutical Sciences, Londrina State University, Brazil
| | - Daniela C C Gerardin
- Graduation Program in Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Brazil
| | - Eliana H Akamine
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Graziela S Ceravolo
- Graduation Program in Physiological Sciences, Department of Physiological Sciences, State University of Londrina, Brazil.
| |
Collapse
|
3
|
Moreira NS, Pinheiro KMP, Sousa LR, Garcia GDS, Figueredo F, Coltro WKT. Distance-based detection of paracetamol in microfluidic paper-based analytical devices for forensic application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:33-39. [PMID: 38010169 DOI: 10.1039/d3ay01739g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Whisky adulteration is a prevalent practice driven by the high cost of these beverages. Counterfeiters commonly dilute whisky with less expensive alcoholic beverages, water, food additives, drugs or pharmaceuticals. Paracetamol (PAR), an analgesic drug that mitigates hangovers and headaches, is commonly used to adulterate whisky. Currently, the primary method for quantifying PAR levels is high-performance liquid chromatography, but this technique is both time consuming and usually generates more residues. In this context, the utilization of miniaturized and portable analytical devices becomes imperative for conducting point-of-care/need analyses. These devices offer several advantages, including portability, user-friendliness, low cost, and minimal material wastage. This study proposes the selective distance-based PAR quantification on whisky samples using a paper-based microfluidic analytical device (μPAD). Colorimetric detection on paper-based platforms offers great benefits such as affordability, portability, and the ability to detect PAR without complicated instrumentation. The optimal detection conditions were achieved by introducing 5 μL of a mixture containing 7.5 mmol L-1 of Fe(III) and K3[Fe(CN)6] into the detection zone, along with 12 μL of whisky samples into the sample zone. The method exhibited linear behavior within the concentration range from 15 to 120 mg L-1, with a determination coefficient of 0.998. PAR was quantified in adulterated samples. The results obtained with the paper-based devices were compared with a referenced method, and no significant differences were observed at a confidence level of 95%. The μPAD allowed to determine ca. 1 drop of pharmaceutical medicine PAR of 200 mg mL-1 in 1 L of solution, demonstrating excellent sensitivity. This method offers cost-effective and rapid analysis, reducing the consumption of samples, reagents, and wastes. Consequently, it could be considered a viable and portable alternative for analyzing beverages at criminal scenes, customs, and police operations, thereby enhancing the field of forensics.
Collapse
Affiliation(s)
- Nikaele S Moreira
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Kemilly M P Pinheiro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Lucas R Sousa
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
- Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel D S Garcia
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
| | - Federico Figueredo
- Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil.
- Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| |
Collapse
|
4
|
Wu T, Zhou K, Hua Y, Zhang W, Li Y. The molecular mechanisms in prenatal drug exposure-induced fetal programmed adult cardiovascular disease. Front Pharmacol 2023; 14:1164487. [PMID: 37153765 PMCID: PMC10157035 DOI: 10.3389/fphar.2023.1164487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
The "developmental origins of health and disease" (DOHaD) hypothesis posits that early-life environmental exposures have a lasting impact on individual's health and permanently shape growth, structure, and metabolism. This reprogramming, which results from fetal stress, is believed to contribute to the development of adulthood cardiovascular diseases such as hypertension, coronary artery disease, heart failure, and increased susceptibility to ischemic injuries. Recent studies have shown that prenatal exposure to drugs, such as glucocorticoids, antibiotics, antidepressants, antiepileptics, and other toxins, increases the risk of adult-onset cardiovascular diseases. In addition, observational and animal experimental studies have demonstrated the association between prenatal drug exposure and the programming of cardiovascular disease in the offspring. The molecular mechanisms underlying these effects are still being explored but are thought to involve metabolism dysregulation. This review summarizes the current evidence on the relationship between prenatal drug exposure and the risk of adult cardiovascular disorders. Additionally, we present the latest insights into the molecular mechanisms that lead to programmed cardiovascular phenotypes after prenatal drug exposure.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Ultrasonic Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wen Zhang, ; Yifei Li,
| |
Collapse
|