1
|
Yang H, Liu Y, Chen G, Zhou B, Xu G, Li Q, Zhu L. Caspase-3/gasdermin-E axis facilitates the progression of coronary artery calcification by inducing the release of high mobility group box protein 1. Int Immunopharmacol 2024; 127:111454. [PMID: 38159554 DOI: 10.1016/j.intimp.2023.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Coronary artery calcification (CAC) is commonly observed in atherosclerotic plaques, which is a pathogenic factor for severe coronary artery disease (CAD). The phenotype changes of vascular smooth muscle cells (VSMCs) are found to participate in CAC progression, which is mainly induced by vascular inflammation and oxidative stress (OS). HMGB1, a critical inflammatory cytokine, is recently reported to induce arterial calcification, which is regulated by the Caspase-3/gasdermin-E (GSDME) axis. However, the function of the Caspase-3/GSDME axis in CAC is unknown. Herein, the involvement of the Caspase-3/GSDME axis in CAC was studied to explore the possible targets for CAC. CAC model was constructed in mice, which was verified by red cytoplasm in coronary artery tissues, increased macrophage infiltration, aggravated inflammation, and enhanced RAGE signaling, accompanied by an increased release of HMGB1 and an activated Caspase-3/ GSDME axis. In β-GP-treated MOVAS-1 cells, calcification, the ROS accumulation, enhanced LDH and HMGB1 release, enlarged macrophage production, aggravated inflammation, and activated RAGE signaling were observed, which were markedly abolished by the transfection of si-HMGB1 and si-GSDME. Moreover, the calcification deposition, the activity of Caspase-3/ GSDME axis, release of HMGB1, macrophage infiltration, cytokine production, and RAGE signaling in CAC mice were notably alleviated by VSMCs-specific GSDME knockdown, not by hematopoietic stem cells (HSCs)-specific GSDME knockdown. Collectively, Caspase-3/GSDME axis facilitated the progression of CAC by inducing the release of HMGB1.
Collapse
Affiliation(s)
- Honghui Yang
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou 451464, PR China.
| | - Yingying Liu
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou 451464, PR China
| | - Gengyu Chen
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou 451464, PR China
| | - Botong Zhou
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou 451464, PR China
| | - Guian Xu
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou 451464, PR China
| | - Qingman Li
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou 451464, PR China
| | - Lijie Zhu
- Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou 451464, PR China
| |
Collapse
|
2
|
Wang DX, Dong ZJ, Deng SX, Tian YM, Xiao YJ, Li X, Ma XR, Li L, Li P, Chang HZ, Liu L, Wang F, Wu Y, Gao X, Zheng SS, Gu HM, Zhang YN, Wu JB, Wu F, Peng Y, Zhang XW, Zhan RY, Gao LX, Sun Q, Guo X, Zhao XD, Luo JH, Zhou R, Han L, Shu Y, Zhao JW. GDF11 slows excitatory neuronal senescence and brain ageing by repressing p21. Nat Commun 2023; 14:7476. [PMID: 37978295 PMCID: PMC10656444 DOI: 10.1038/s41467-023-43292-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.
Collapse
Affiliation(s)
- Di-Xian Wang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zhao-Jun Dong
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Sui-Xin Deng
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | | | - Yu-Jie Xiao
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | - Xinran Li
- The Global Scientific and Technological Innovation Center and the MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Liang Li
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | - Pengxiao Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | | | | | - Fan Wang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Wu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xiang Gao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Shuang Zheng
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Hui-Min Gu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ya-Nan Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jian-Bin Wu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Fan Wu
- Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, 310003, Hangzhou, China
| | - Yonglin Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiao-Wen Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ren-Ya Zhan
- Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, 310003, Hangzhou, China
| | - Li-Xia Gao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiao-Dong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jian-Hong Luo
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lei Han
- BGI Research, 310030, Hangzhou, China.
| | - Yousheng Shu
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China.
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China.
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|