1
|
Wang L, Zhang X, Ma C, Wu N. 1-Phosphate receptor agonists: A promising therapeutic avenue for ischemia-reperfusion injury management. Int Immunopharmacol 2024; 131:111835. [PMID: 38508097 DOI: 10.1016/j.intimp.2024.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Ischemia-reperfusion injury (IRI) - a complex pathological condition occurring when blood supply is abruptly restored to ischemic tissues, leading to further tissue damage - poses a significant clinical challenge. Sphingosine-1-phosphate receptors (S1PRs), a specialized set of G-protein-coupled receptors comprising five subtypes (S1PR1 to S1PR5), are prominently present in various cell membranes, including those of lymphocytes, cardiac myocytes, and endothelial cells. Increasing evidence highlights the potential of targeting S1PRs for IRI therapeutic intervention. Notably, preconditioning and postconditioning strategies involving S1PR agonists like FTY720 have demonstrated efficacy in mitigating IRI. As the synthesis of a diverse array of S1PR agonists continues, with FTY720 being a prime example, the body of experimental evidence advocating for their role in IRI treatment is expanding. Despite this progress, comprehensive reviews delineating the therapeutic landscape of S1PR agonists in IRI remain limited. This review aspires to meticulously elucidate the protective roles and mechanisms of S1PR agonists in preventing and managing IRI affecting various organs, including the heart, kidney, liver, lungs, intestines, and brain, to foster novel pharmacological approaches in clinical settings.
Collapse
Affiliation(s)
- Linyuan Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Nan Wu
- The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Varre JV, Holland WL, Summers SA. You aren't IMMUNE to the ceramides that accumulate in cardiometabolic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159125. [PMID: 35218934 PMCID: PMC9050903 DOI: 10.1016/j.bbalip.2022.159125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Obesity leads to persistent increases in immune responses that contribute to cardiometabolic pathologies such as diabetes and cardiovascular disease. Pro-inflammatory macrophages infiltrate the expanding fat mass, which leads to increased production of cytokines such as tumor necrosis factor-alpha. Moreover, saturated fatty acids enhance signaling through the toll-like receptors involved in innate immunity. Herein we discuss the evidence that ceramides-which are intermediates in the biosynthetic pathway that produces sphingolipids-are essential intermediates that link these inflammatory signals to impaired tissue function. We discuss the mechanisms linking these immune insults to ceramide production and review the numerous ceramide actions that alter cellular metabolism, induce oxidative stress, and stimulate apoptosis. Lastly, we evaluate the correlation of ceramides in humans with inflammation-linked cardiometabolic disease and discuss preclinical studies which suggest that ceramide-lowering interventions may be an effective strategy to treat or prevent such maladies.
Collapse
Affiliation(s)
- Joseph V Varre
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America.
| |
Collapse
|
3
|
Cirillo F, Piccoli M, Ghiroldi A, Monasky MM, Rota P, La Rocca P, Tarantino A, D'Imperio S, Signorelli P, Pappone C, Anastasia L. The antithetic role of ceramide and sphingosine-1-phosphate in cardiac dysfunction. J Cell Physiol 2021; 236:4857-4873. [PMID: 33432663 DOI: 10.1002/jcp.30235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally and the number of cardiovascular patients, which is estimated to be over 30 million in 2018, represent a challenging issue for the healthcare systems worldwide. Therefore, the identification of novel molecular targets to develop new treatments is an ongoing challenge for the scientific community. In this context, sphingolipids (SLs) have been progressively recognized as potent bioactive compounds that play crucial roles in the modulation of several key biological processes, such as proliferation, differentiation, and apoptosis. Furthermore, SLs involvement in cardiac physiology and pathophysiology attracted much attention, since these molecules could be crucial in the development of CVDs. Among SLs, ceramide and sphingosine-1-phosphate (S1P) represent the most studied bioactive lipid mediators, which are characterized by opposing activities in the regulation of the fate of cardiac cells. In particular, maintaining the balance of the so-called ceramide/S1P rheostat emerged as an important novel therapeutical target to counteract CVDs. Thus, this review aims at critically summarizing the current knowledge about the antithetic roles of ceramide and S1P in cardiomyocytes dysfunctions, highlighting how the modulation of their metabolism through specific molecules, such as myriocin and FTY720, could represent a novel and interesting therapeutic approach to improve the management of CVDs.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Paolo La Rocca
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Sara D'Imperio
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Paola Signorelli
- Department of Health Sciences, Biochemistry and Molecular Biology Laboratory, University of Milan, Milan, Italy
| | - Carlo Pappone
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
4
|
Jin J, Lu Z, Li Y, Ru JH, Lopes-Virella MF, Huang Y. LPS and palmitate synergistically stimulate sphingosine kinase 1 and increase sphingosine 1 phosphate in RAW264.7 macrophages. J Leukoc Biol 2018; 104:843-853. [PMID: 29882996 PMCID: PMC6162112 DOI: 10.1002/jlb.3a0517-188rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/28/2023] Open
Abstract
It has been well established that patients with diabetes or metabolic syndrome (MetS) have increased prevalence and severity of periodontitis, an oral infection initiated by bacteria and characterized by tissue inflammation and destruction. To understand the underlying mechanisms, we have shown that saturated fatty acid (SFA), which is increased in patients with type 2 diabetes or MetS, and LPS, an important pathogenic factor for periodontitis, synergistically stimulate expression of proinflammatory cytokines in macrophages by increasing ceramide production. However, the mechanisms by which increased ceramide enhances proinflammatory cytokine expression have not been well understood. Since sphingosine 1 phosphate (S1P) is a metabolite of ceramide and a bioactive lipid, we tested our hypothesis that stimulation of ceramide production by LPS and SFA facilitates S1P production, which contributes to proinflammatory cytokine expression. Results showed that LPS and palmitate, a major SFA, synergistically increased not only ceramide, but also S1P, and stimulated sphingosine kinase (SK) expression and membrane translocation in RAW264.7 macrophages. Results also showed that SK inhibition attenuated the stimulatory effect of LPS and palmitate on IL-6 secretion. Moreover, results showed that S1P enhanced the stimulatory effect of LPS and palmitate on IL-6 secretion. Finally, results showed that targeting S1P receptors using either S1P receptor antagonists or small interfering RNA attenuated IL-6 upregulation by LPS and palmitate. Taken together, this study demonstrated that LPS and palmitate synergistically stimulated S1P production and S1P in turn contributed to the upregulation of proinflammatory cytokine expression in macrophages by LPS and palmitate.
Collapse
Affiliation(s)
- Junfei Jin
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zhongyang Lu
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ji Hyun Ru
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Maria F Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Yan Huang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
5
|
Mohamed AS, Hanafi NI, Sheikh Abdul Kadir SH, Md Noor J, Abdul Hamid Hasani N, Ab Rahim S, Siran R. Ursodeoxycholic acid protects cardiomyocytes against cobalt chloride induced hypoxia by regulating transcriptional mediator of cells stress hypoxia inducible factor 1α and p53 protein. Cell Biochem Funct 2017; 35:453-463. [PMID: 29027248 DOI: 10.1002/cbf.3303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 11/06/2022]
Abstract
In hepatocytes, ursodeoxycholic acid (UDCA) activates cell signalling pathways such as p53, intracellular calcium ([Ca2+ ]i ), and sphingosine-1-phosphate (S1P)-receptor via Gαi -coupled-receptor. Recently, UDCA has been shown to protect the heart against hypoxia-reoxygenation injury. However, it is not clear whether UDCA cardioprotection against hypoxia acts through a transcriptional mediator of cells stress, HIF-1α and p53. Therefore, in here, we aimed to investigate whether UDCA could protect cardiomyocytes (CMs) against hypoxia by regulating expression of HIF-1α, p53, [Ca2+ ]i , and S1P-Gαi -coupled-receptor. Cardiomyocytes were isolated from newborn rats (0-2 days), and hypoxia was induced by using cobalt chloride (CoCl2 ). Cardiomyocytes were treated with UDCA and cotreated with either FTY720 (S1P-receptor agonist) or pertussis toxin (PTX; Gαi inhibitor). Cells were subjected for proliferation assay, beating frequency, QuantiGene Plex assay, western blot, immunofluorescence, and calcium imaging. Our findings showed that UDCA counteracted the effects of CoCl2 on cell viability, beating frequency, HIF-1α, and p53 protein expression. We found that these cardioprotection effects of UDCA were similar to FTY720, S1P agonist. Furthermore, we observed that UDCA protects CMs against CoCl2 -induced [Ca2+ ]i dynamic alteration. Pharmacological inhibition of the Gαi -sensitive receptor did not abolish the cardioprotection of UDCA against CoCl2 detrimental effects, except for cell viability and [Ca2+ ]i . Pertussis toxin is partially effective in inhibiting UDCA protection against CoCl2 effects on CM cell viability. Interestingly, PTX fully inhibits UDCA cardioprotection on CoCl2 -induced [Ca2+ ]i dynamic changes. We conclude that UDCA cardioprotection against CoCl2 -induced hypoxia is similar to FTY720, and its actions are not fully mediated by the Gαi -coupled protein sensitive pathways. Ursodeoxycholic acid is the most hydrophilic bile acid and is currently used to treat liver diseases. Recently, UDCA is shown to have a cardioprotection effects; however, the mechanism of UDCA cardioprotection is still poorly understood. The current data generated were the first to show that UDCA is able to inhibit the activation of HIF-1α and p53 protein during CoCl2 -induced hypoxia in cardiomyocytes. This study provides an insight of UDCA mechanism in protecting cardiomyocytes against hypoxia.
Collapse
Affiliation(s)
- Anis Syamimi Mohamed
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Noorul Izzati Hanafi
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Molecular Medicine and Biotechnology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Julina Md Noor
- Department of Emergency and Trauma, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | | | - Sharaniza Ab Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| | - Rosfaiizah Siran
- Department of Physiology, Faculty of Medicine, UiTM, Sungai Buloh, Malaysia
| |
Collapse
|
6
|
Li N, Zhang F. Implication of sphingosin-1-phosphate in cardiovascular regulation. Front Biosci (Landmark Ed) 2016; 21:1296-313. [PMID: 27100508 DOI: 10.2741/4458] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA,
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
7
|
Egom EE. Sphingosine-1-phosphate signalling as a therapeutic target for patients with abnormal glucose metabolism and ischaemic heart disease. J Cardiovasc Med (Hagerstown) 2015; 15:517-24. [PMID: 23839592 DOI: 10.2459/jcm.0b013e3283639755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abnormalities of glucose metabolism in patients with ischaemic heart disease (IHD) are common and are associated with a poor outcome in patients with and without diabetes. Sphingosine-1-phosphate (S1P) is a bioactive lipid which has been shown to increase insulin sensitivity in rodents and to increase myocardial tolerance to ischaemia. In the present review, I explore the relevance of S1P signalling pathway to IHD and abnormalities in glucose tolerance, and its potential as a therapeutic target for patients with abnormal glucose metabolism and IHD.
Collapse
Affiliation(s)
- Emmanuel E Egom
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
The immunosuppressant FTY720 prolongs survival in a mouse model of diet-induced coronary atherosclerosis and myocardial infarction. J Cardiovasc Pharmacol 2014; 63:132-143. [PMID: 24508946 DOI: 10.1097/fjc.0000000000000031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FTY720, an analogue of sphingosine-1-phosphate, is cardioprotective during acute injury. Whether long-term FTY720 affords cardioprotection is unknown. Here, we report the effects of oral FTY720 on ischemia/reperfusion injury and in hypomorphic apoE mice deficient in SR-BI receptor expression (ApoeR61(h/h)/SRB1(-/- mice), a model of diet-induced coronary atherosclerosis and heart failure. We added FTY720 (0.3 mg·kg(-1)·d(-1)) to the drinking water of C57BL/6J mice. After ex vivo cardiac ischemia/reperfusion injury, these mice had significantly improved left ventricular (LV) developed pressure and reduced infarct size compared with controls. Subsequently, ApoeR61(h/h)/SRB1(-/-) mice fed a high-fat diet for 4 weeks were treated or not with oral FTY720 (0.05 mg·kg(-1)·d(-1)). This sharply reduced mortality (P < 0.02) and resulted in better LV function and less LV remodeling compared with controls without reducing hypercholesterolemia and atherosclerosis. Oral FTY720 reduced the number of blood lymphocytes and increased the percentage of CD4+Foxp3+ regulatory T cells (Tregs) in the circulation, spleen, and lymph nodes. FTY720-treated mice exhibited increased TGF-β and reduced IFN-γ expression in the heart. Also, CD4 expression was increased and strongly correlated with molecules involved in natural Treg activity, such as TGF-β and GITR. Our data suggest that long-term FTY720 treatment enhances LV function and increases longevity in mice with heart failure. These benefits resulted not from atheroprotection but from systemic immunosuppression and a moderate reduction of inflammation in the heart.
Collapse
|
9
|
Sphingosine-1-phosphate/S1P receptors signaling modulates cell migration in human bone marrow-derived mesenchymal stem cells. Mediators Inflamm 2014; 2014:565369. [PMID: 25147438 PMCID: PMC4132341 DOI: 10.1155/2014/565369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/12/2014] [Indexed: 12/30/2022] Open
Abstract
The recruitment of bone marrow-derived mesenchymal stem cells (BMSCs) to damaged tissues and sites of inflammation is an essential step for clinical therapy. However, the signals regulating the motility of these cells are still not fully understood. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, is known to have a variety of biological effects on various cells. Here, we investigated the roles of S1P and S1P receptors (S1PRs) in migration of human BMSCs. We found that S1P exerted a powerful migratory action on human BMSCs. Moreover, by employing RNA interference technology and pharmacological tools, we demonstrated that S1PR1 and S1PR3 are responsible for S1P-induced migration of human BMSCs. In contrast, S1PR2 mediates the inhibition of migration. Additionally, we explored the downstream signaling pathway of the S1P/S1PRs axis and found that activation of S1PR1 or S1PR3 increased migration of human BMSCs through a G i /extracellular regulated protein kinases 1/2- (ERK1/2-) dependent pathway, whereas activation of S1PR2 decreased migration through the Rho/Rho-associated protein kinase (ROCK) pathway. In conclusion, we reveal that the S1P/S1PRs signaling axis regulates the migration of human BMSCs via a dual-directional mechanism. Thus, selective modulation of S1PR's activity on human BMSCs may provide an effective approach to immunotherapy or tissue regeneration.
Collapse
|
10
|
Waeber C, Walther T. Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction. Circ J 2014; 78:795-802. [PMID: 24632793 DOI: 10.1253/circj.cj-14-0178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on the role of sphingosine-1-phosphate (S1P) signaling in the heart, with particular emphasis on how it could be modulated therapeutically in the context of myocardial infarction (MI). After a brief general description of sphingolipid metabolism and signaling, this review will examine the relationship between S1P and the beneficial effects of high-density lipoprotein (HDL), and finally focus on the known actions of S1P on different mechanisms relevant to MI pathophysiology (cardiomyocyte protection, fibrosis, remodeling, arrhythmia, control of vascular tone and potential repair mechanisms). The potential of particular enzyme isoforms or receptor subtypes for the development of therapeutic agents for MI will also be explored.
Collapse
Affiliation(s)
- Christian Waeber
- Department of Pharmacology and Therapeutics, School of Medicine, School of Pharmacy, University College Cork
| | | |
Collapse
|
11
|
Xiang SY, Ouyang K, Yung BS, Miyamoto S, Smrcka AV, Chen J, Heller Brown J. PLCε, PKD1, and SSH1L transduce RhoA signaling to protect mitochondria from oxidative stress in the heart. Sci Signal 2013; 6:ra108. [PMID: 24345679 DOI: 10.1126/scisignal.2004405] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Activation of the small guanosine triphosphatase RhoA can promote cell survival in cultured cardiomyocytes and in the heart. We showed that the circulating lysophospholipid sphingosine 1-phosphate (S1P), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) agonist, signaled through RhoA and phospholipase Cε (PLCε) to increase the phosphorylation and activation of protein kinase D1 (PKD1). Genetic deletion of either PKD1 or its upstream regulator PLCε inhibited S1P-mediated cardioprotection against ischemia/reperfusion injury. Cardioprotection involved PKD1-mediated phosphorylation and inhibition of the cofilin phosphatase Slingshot 1L (SSH1L). Cofilin 2 translocates to mitochondria in response to oxidative stress or ischemia/reperfusion injury, and both S1P pretreatment and SSH1L knockdown attenuated translocation of cofilin 2 to mitochondria. Cofilin 2 associates with the proapoptotic protein Bax, and the mitochondrial translocation of Bax in response to oxidative stress was also attenuated by S1P treatment in isolated hearts or by knockdown of SSH1L or cofilin 2 in cardiomyocytes. Furthermore, SSH1L knockdown, like S1P treatment, increased cardiomyocyte survival and preserved mitochondrial integrity after oxidative stress. These findings reveal a pathway initiated by GPCR agonist-induced RhoA activation, in which PLCε signals to PKD1-mediated phosphorylation of cytoskeletal proteins to prevent the mitochondrial translocation and proapoptotic function of cofilin 2 and Bax and thereby promote cell survival.
Collapse
Affiliation(s)
- Sunny Y Xiang
- 1Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Gorshkova IA, Wang H, Orbelyan GA, Goya J, Natarajan V, Beiser DG, Vanden Hoek TL, Berdyshev EV. Inhibition of sphingosine-1-phosphate lyase rescues sphingosine kinase-1-knockout phenotype following murine cardiac arrest. Life Sci 2013; 93:359-66. [PMID: 23892195 DOI: 10.1016/j.lfs.2013.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/09/2013] [Accepted: 07/12/2013] [Indexed: 01/24/2023]
Abstract
AIMS To test the role of sphingosine-1-phosphate (S1P) signaling system in the in vivo setting of resuscitation and survival after cardiac arrest. MAIN METHODS A mouse model of potassium-induced cardiac arrest and resuscitation was used to test the importance of S1P homeostasis in resuscitation and survival. C57BL/6 and sphingosine kinase-1 knockout (SphK1-KO) female mice were arrested for 8 min then subjected to 5 minute CPR with epinephrine bolus given at 90s after the beginning of CPR. Animal survival was monitored for 4h post-resuscitation. Upregulation of tissue and circulatory S1P levels were achieved via inhibition of S1P lyase by 2-acetyl-5-tetrahydroxybutyl imidazole (THI). Plasma and heart tissue S1P and ceramide levels were quantified by targeted ESI-LC/MS/MS. KEY FINDINGS Lack of SphK1 and low tissue/circulatory S1P levels in SphK1-KO mice led to poor animal resuscitation after cardiac arrest and to impaired survival post-resuscitation. Inhibition of S1P lyase in SphK1-KO mice drastically improved animal resuscitation and survival. Improved resuscitation and survival of THI-treated SphK1-KO mice were better correlated with cardiac dihydro-S1P (DHS1P) than S1P levels. The lack of SphK1 and the inhibition of S1P lyase by THI were accompanied by modulation in cardiac S1PR1 and S1PR2 expression and by selective changes in plasma N-palmitoyl- and N-behenoyl-ceramide levels. SIGNIFICANCE Our data provide evidence for the crucial role for SphK1 and S1P signaling system in resuscitation and survival after cardiac arrest, which may form the basis for development of novel therapeutic strategy to support resuscitation and long-term survival of cardiac arrest patients.
Collapse
Affiliation(s)
- Irina A Gorshkova
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Morozov VI, Sakuta GA, Kalinski MI. Sphingosine-1-phosphate: distribution, metabolism and role in the regulation of cellular functions. UKRAINIAN BIOCHEMICAL JOURNAL 2013; 85:5-21. [PMID: 23534286 DOI: 10.15407/ubj85.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of sphingosine-1-phosphate (S1P) in regulation of cellular functions and cell protection is reviewed. S1P, along with other sphingolipid metabolites, is believed to act as an intracellular second messenger and as an extracellular mediator molecule. S1P chemistry, production and metabolism are described. Cellular receptors for S1P and their tissue specificity are described. Platelets and erythrocytes have a crucial significance in blood transport of S1P. Hypoxic conditions induce an increase in S1P, which initiates a set of cytoprotective events via its cellular receptors. S1P involvement in regulation of cell migration, myogenesis, control of skeletal muscle function is described. It is shown that S1P balance disturbances may mediate pathological state. S1P system implication in regulation of the most important cellular functions allows considering it as a prospective remedial target.
Collapse
Affiliation(s)
- V I Morozov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia.
| | | | | |
Collapse
|
14
|
Kawabori M, Kacimi R, Karliner JS, Yenari MA. Sphingolipids in cardiovascular and cerebrovascular systems: Pathological implications and potential therapeutic targets. World J Cardiol 2013; 5:75-86. [PMID: 23675553 PMCID: PMC3653015 DOI: 10.4330/wjc.v5.i4.75] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023] Open
Abstract
The sphingolipid metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) and its enzyme sphingosine kinase (SphK) play an important role in the regulation of cell proliferation, survival, inflammation, and cell death. Ceramide and sphingosine usually inhibit proliferation and promote apoptosis, while its metabolite S1P phosphorylated by SphK stimulates growth and suppresses apoptosis. Because these metabolites are interconvertible, it has been proposed that it is not the absolute amounts of these metabolites but rather their relative levels that determine cell fate. The relevance of this “sphingolipid rheostat” and its role in regulating cell fate has been borne out by work in many labs using many different cell types and experimental manipulations. A central finding of these studies is that SphK is a critical regulator of the sphingolipid rheostat, as it not only produces the pro-growth, anti-apoptotic messenger S1P, but also decreases levels of pro-apoptotic ceramide and sphingosine. Activation of bioactive sphingolipid S1P signaling has emerged as a critical protective pathway in response to acute ischemic injury in both cardiac and cerebrovascular disease, and these observations have considerable relevance for future potential therapeutic targets.
Collapse
|
15
|
Fryer RM, Muthukumarana A, Harrison PC, Nodop Mazurek S, Chen RR, Harrington KE, Dinallo RM, Horan JC, Patnaude L, Modis LK, Reinhart GA. The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P₁) and hypertension (S1P₃) in rat. PLoS One 2012; 7:e52985. [PMID: 23285242 PMCID: PMC3532212 DOI: 10.1371/journal.pone.0052985] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/22/2012] [Indexed: 12/21/2022] Open
Abstract
Sphingosine-1-phospate (S1P) and S1P receptor agonists elicit mechanism-based effects on cardiovascular function in vivo. Indeed, FTY720 (non-selective S1P(X) receptor agonist) produces modest hypertension in patients (2-3 mmHg in 1-yr trial) as well as acute bradycardia independent of changes in blood pressure. However, the precise receptor subtypes responsible is controversial, likely dependent upon the cardiovascular response in question (e.g. bradycardia, hypertension), and perhaps even species-dependent since functional differences in rodent, rabbit, and human have been suggested. Thus, we characterized the S1P receptor subtype specificity for each compound in vitro and, in vivo, the cardiovascular effects of FTY720 and the more selective S1P₁,₅ agonist, BAF312, were tested during acute i.v. infusion in anesthetized rats and after oral administration for 10 days in telemetry-instrumented conscious rats. Acute i.v. infusion of FTY720 (0.1, 0.3, 1.0 mg/kg/20 min) or BAF312 (0.5, 1.5, 5.0 mg/kg/20 min) elicited acute bradycardia in anesthetized rats demonstrating an S1P₁ mediated mechanism-of-action. However, while FTY720 (0.5, 1.5, 5.0 mg/kg/d) elicited dose-dependent hypertension after multiple days of oral administration in rat at clinically relevant plasma concentrations (24-hr mean blood pressure = 8.4, 12.8, 16.2 mmHg above baseline vs. 3 mmHg in vehicle controls), BAF312 (0.3, 3.0, 30.0 mg/kg/d) had no significant effect on blood pressure at any dose tested suggesting that hypertension produced by FTY720 is mediated S1P₃ receptors. In summary, in vitro selectivity results in combination with studies performed in anesthetized and conscious rats administered two clinically tested S1P agonists, FTY720 or BAF312, suggest that S1P₁ receptors mediate bradycardia while hypertension is mediated by S1P₃ receptor activation.
Collapse
Affiliation(s)
- Ryan M Fryer
- Department of Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sphingolipids: a potential molecular approach to treat allergic inflammation. J Allergy (Cairo) 2012; 2012:154174. [PMID: 23316248 PMCID: PMC3536436 DOI: 10.1155/2012/154174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/15/2012] [Accepted: 10/30/2012] [Indexed: 01/02/2023] Open
Abstract
Allergic inflammation is an immune response to foreign antigens, which begins within minutes of exposure to the allergen followed by a late phase leading to chronic inflammation. Prolonged allergic inflammation manifests in diseases such as urticaria and rhino-conjunctivitis, as well as chronic asthma and life-threatening anaphylaxis. The prevalence of allergic diseases is profound with 25% of the worldwide population affected and a rising trend across all ages, gender, and racial groups. The identification and avoidance of allergens can manage this disease, but this is not always possible with triggers being common foods, prevalent air-borne particles and only extremely low levels of allergen exposure required for sensitization. Patients who are sensitive to multiple allergens require prophylactic and symptomatic treatments. Current treatments are often suboptimal and associated with adverse effects, such as the interruption of cognition, sleep cycles, and endocrine homeostasis, all of which affect quality of life and are a financial burden to society. Clearly, a better therapeutic approach for allergic diseases is required. Herein, we review the current knowledge of allergic inflammation and discuss the role of sphingolipids as potential targets to regulate inflammatory development in vivo and in humans. We also discuss the benefits and risks of using sphingolipid inhibitors.
Collapse
|
17
|
Amedei A, Prisco D, D’Elios MM. Multiple sclerosis: the role of cytokines in pathogenesis and in therapies. Int J Mol Sci 2012; 13:13438-13460. [PMID: 23202961 PMCID: PMC3497335 DOI: 10.3390/ijms131013438] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis, the clinical features and pathological correlate for which were first described by Charcot, is a chronic neuroinflammatory disease with unknown etiology and variable clinical evolution. Although neuroinflammation is a descriptive denominator in multiple sclerosis based on histopathological observations, namely the penetration of leukocytes into the central nervous system, the clinical symptoms of relapses, remissions and progressive paralysis are the result of losses of myelin and neurons. In the absence of etiological factors as targets for prevention and therapy, the definition of molecular mechanisms that form the basis of inflammation, demyelination and toxicity for neurons have led to a number of treatments that slow down disease progression in specific patient cohorts, but that do not cure the disease. Current therapies are directed to block the immune processes, both innate and adaptive, that are associated with multiple sclerosis. In this review, we analyze the role of cytokines in the multiple sclerosis pathogenesis and current/future use of them in treatments of multiple sclerosis.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Internal Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy; E-Mail:
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Domenico Prisco
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Department of Medical and Surgical Critical Care, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Mario Milco D’Elios
- Department of Internal Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy; E-Mail:
- Department of Biomedicine, Patologia Medica Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Firenze 20134, Italy; E-Mail:
- Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| |
Collapse
|
18
|
The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: Oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:26-36. [DOI: 10.1016/j.cbpb.2012.05.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 12/19/2022]
|
19
|
Karliner JS. Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:203-12. [PMID: 22735359 DOI: 10.1016/j.bbalip.2012.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/14/2012] [Accepted: 06/17/2012] [Indexed: 12/11/2022]
Abstract
Activation of sphingosine kinase/sphingosine 1-phosphate (SK/S1P)-mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. S1P is released in both ischemic pre- and post-conditioning. Application of exogenous S1P to cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion exerts prosurvival effects. Synthetic congeners of S1P such as FTY720 mimic these responses. Gene targeted mice null for the SK1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic pre- or postconditioning. Measurements of cardiac SK activity and S1P parallel these observations. Experiments in SK2 knockout mice have revealed that this isoform is necessary for survival in the heart. High density lipoprotein (HDL) is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been inhibited implicate the S1P cargo of HDL in cardioprotection. Inhibition of S1P lyase, an endogenous enzyme that degrades S1P, also leads to cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
20
|
Hsu A, Zhang W, Lee JF, An J, Ekambaram P, Liu J, Honn KV, Klinge CM, Lee MJ. Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol 2012; 40:1619-26. [PMID: 22344462 DOI: 10.3892/ijo.2012.1379] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 10/20/2011] [Indexed: 11/06/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) regulates a wide array of biological functions. However, the role of S1P signaling in tumorigenesis remains to be elucidated. In this study, we show that S1P receptor subtype 3 (S1P₃) is markedly up-regulated in a subset of lung adenocarcinoma cells compared to normal lung epithelial cells. Specific knockdown of S1P₃ receptors inhibits proliferation and anchorage-independent growth of lung adenocarcinoma cells. Mechanistically, we demonstrate that S1P₃ signaling increases epidermal growth factor receptor (EGFR) expression via the Rho kinase (ROCK) pathway in lung adenocarcinoma cells. Nuclear run-off analysis indicates that S1P/S1P₃ signaling transcriptionally increases EGFR expression. Knockdown of S1P₃ receptors diminishes the S1P-stimulated EGFR expression in lung adenocarcinoma cells. Moreover, S1P treatment greatly enhances EGF-stimulated colony formation, proliferation and invasion of lung adenocarcinoma cells. Together, these results suggest that the enhanced S1P₃-EGFR signaling axis may contribute to the tumorigenesis or progression of lung adenocarcinomas.
Collapse
Affiliation(s)
- Andrew Hsu
- Bioactive Lipid Research Program, Department of Pathology, Wayne State University School of Medicine, 423 Chemistry Building, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen SJ, Wang YL, Fan HC, Lo WT, Wang CC, Sytwu HK. Current status of the immunomodulation and immunomediated therapeutic strategies for multiple sclerosis. Clin Dev Immunol 2011; 2012:970789. [PMID: 22203863 PMCID: PMC3235500 DOI: 10.1155/2012/970789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/12/2011] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and CD4(+) T cells form the core immunopathogenic cascade leading to chronic inflammation. Traditionally, Th1 cells (interferon-γ-producing CD4(+) T cells) driven by interleukin 12 (IL12) were considered to be the encephalitogenic T cells in MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Currently, Th17 cells (Il17-producing CD4(+) T cells) are considered to play a fundamental role in the immunopathogenesis of EAE. This paper highlights the growing evidence that Th17 cells play the core role in the complex adaptive immunity of EAE/MS and discusses the roles of the associated immune cells and cytokines. These constitute the modern immunological basis for the development of novel clinical and preclinical immunomodulatory therapies for MS discussed in this paper.
Collapse
Affiliation(s)
- Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Yen-Ling Wang
- Center for Composite Tissue Allotransplantation, Chang Gung Memorial Hospital, Linkou, New Taipei City 333, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wen-Tsung Lo
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Chien Wang
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
22
|
Agonist-dependent effects of mutations in the sphingosine-1-phosphate type 1 receptor. Eur J Pharmacol 2011; 667:105-12. [DOI: 10.1016/j.ejphar.2011.05.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/05/2011] [Accepted: 05/22/2011] [Indexed: 11/17/2022]
|
23
|
Salomone S, Waeber C. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects. Front Pharmacol 2011; 2:9. [PMID: 21687504 PMCID: PMC3110020 DOI: 10.3389/fphar.2011.00009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/09/2011] [Indexed: 01/26/2023] Open
Abstract
Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P2 and S1P3 receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P2 receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca2+ concentration via P2 receptor or α1A-adrenoceptor stimulation and α1A-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P3-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P1/3 receptor antagonist, VPC23019, does not inhibit S1P3-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.
Collapse
Affiliation(s)
- Salvatore Salomone
- Department of Clinical and Molecular Biomedicine, Catania University Catania, Italy
| | | |
Collapse
|
24
|
Bandhuvula P, Honbo N, Wang GY, Jin ZQ, Fyrst H, Zhang M, Borowsky AD, Dillard L, Karliner JS, Saba JD. S1P lyase: a novel therapeutic target for ischemia-reperfusion injury of the heart. Am J Physiol Heart Circ Physiol 2011; 300:H1753-61. [PMID: 21335477 DOI: 10.1152/ajpheart.00946.2010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes cardiomyocyte survival and contributes to ischemic preconditioning. S1P lyase (SPL) is a stress-activated enzyme responsible for irreversible S1P catabolism. We hypothesized that SPL contributes to oxidative stress by depleting S1P pools available for cardioprotective signaling. Accordingly, we evaluated SPL inhibition as a strategy for reducing cardiac ischemia-reperfusion (I/R) injury. We measured SPL expression and enzyme activity in murine hearts. Basal SPL activity was low in wild-type cardiac tissue but was activated in response to 50 min of ischemia (n = 5, P < 0.01). Hearts of heterozygous SPL knockout mice exhibited reduced SPL activity, elevated S1P levels, smaller infarct size, and increased functional recovery after I/R compared with littermate controls (n = 5, P < 0.01). The small molecule tetrahydroxybutylimidazole (THI) is a Federal Drug Administration-approved food additive that inhibits SPL. When given overnight at 25 mg/l in drinking water, THI raised S1P levels and reduced SPL activity (n = 5, P < 0.01). THI reduced infarct size and enhanced hemodynamic recovery in response to 50 min of ischemia and to 40 min of reperfusion in ex vivo hearts (n = 7, P < .01). These data correlated with an increase in MAP kinase-interacting serine/threonine kinase 1, eukaryotic translation initiation factor 4E, and ribosomal protein S6 phosphorylation levels after I/R, suggesting that SPL inhibition enhances protein translation. Pretreatment with an S1P₁ and S1P₃ receptor antagonist partially reversed the effects of THI. These results reveal, for the first time, that SPL is an ischemia-induced enzyme that can be targeted as a novel strategy for preventing cardiac I/R injury.
Collapse
|
25
|
Verzijl D, Peters SLM, Alewijnse AE. Sphingosine-1-phosphate receptors: zooming in on ligand-induced intracellular trafficking and its functional implications. Mol Cells 2010; 29:99-104. [PMID: 20127285 DOI: 10.1007/s10059-010-0041-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 12/27/2009] [Indexed: 01/10/2023] Open
Abstract
Regulatory processes including receptor phosphorylation and intracellular trafficking, also referred to as receptor internalization, are important processes to terminate G protein-coupled receptor (GPCR) signaling. Compelling evidence now indicates that internalization of a receptor is not necessarily the endpoint of signaling, but can also be the beginning of the activation of intracellular signaling pathways. Sphingosine-1-phosphate (S1P) receptors, which are activated by the endogenous phospholipid S1P, belong to the family of GPCRs. Interestingly, there is evidence indicating differential intracellular trafficking of one of the S1P receptor subtypes, the S1P1 receptor, upon agonist activation by either S1P or the synthetic agonist FTY720-P. Moreover, the differential effect of FTY720-P on S1P1 receptor regulation has been suggested to be the mechanism of action of this drug, which is now in Phase III clinical trials for the treatment of multiple sclerosis. It is thus of importance to get a good insight into the regulation of S1P receptors. This review therefore gives a detailed overview about the current state of knowledge on S1P receptor internalization and its functional implications, including some data on nuclear signaling of S1P receptors.
Collapse
Affiliation(s)
- Dennis Verzijl
- Department Pharmacology and Pharmacotherapy, Academic Medical Center, Amsterdam, the Netherlands
| | | | | |
Collapse
|
26
|
Tao R, Hoover HE, Honbo N, Kalinowski M, Alano CC, Karliner JS, Raffai R. High-density lipoprotein determines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate. Am J Physiol Heart Circ Physiol 2010; 298:H1022-8. [PMID: 20061542 DOI: 10.1152/ajpheart.00902.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The lipid mediator sphingosine 1-phosphate (S1P) confers survival benefits in cardiomyocytes and isolated hearts subjected to oxidative stress. High-density lipoprotein (HDL) is a major carrier of S1P in the serum, but whether HDL-associated S1P directly mediates survival in a preparation composed exclusively of cardiomyocytes has not been demonstrated. Accordingly, we tested the hypothesis that signal activation and survival during simulated ischemia-reperfusion injury in response to HDL require lipoprotein-associated S1P. As a model, we used adult mouse cardiomyocytes subjected to hypoxia-reoxygenation. Cells were treated or not with autologous mouse HDL, which significantly increased myocyte viability as measured by trypan blue exclusion. This survival effect was abrogated by the S1P(1) and SIP(3) receptor antagonist VPC 23019. The selective S1P(3) antagonist CAY10444, the G(i) antagonist pertussis toxin, the MEK (MAPK/ERK) kinase inhibitor PD-98059, and the phosphoinositide-3 kinase inhibitor wortmannin also inhibited the prosurvival effect of HDL. We observed that HDL activated both Akt (protein kinase B) and the MEK1/2-ERK1/2 pathway and also stimulated phosphorylation of glycogen synthase kinase-3beta. ERK1/2 activation was through an S1P(1) subtype receptor-G(i) protein-dependent pathway, whereas the activation of Akt was inhibited by CAY10444, indicating mediation by S1P(3) subtype receptors. We conclude that HDL, via its cargo of S1P, can directly protect cardiomyocytes against simulated oxidative injury in the absence of vascular effects and that prosurvival signal activation is dependent on both S1P(1) and S1P(3) subtype receptors.
Collapse
Affiliation(s)
- Rong Tao
- Veterans Affairs Medical Center and Department of Medicine, University of California, San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|