1
|
Nakamura-Takahashi A, Miyake K, Watanabe A, Hirai Y, Iijima O, Miyake N, Adachi K, Nitahara-Kasahara Y, Kinoshita H, Noguchi T, Abe S, Narisawa S, Millán JL, Shimada T, Okada T. Treatment of hypophosphatasia by muscle-directed expression of bone-targeted alkaline phosphatase via self-complementary AAV8 vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15059. [PMID: 26904710 PMCID: PMC4739158 DOI: 10.1038/mtm.2015.59] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 01/18/2023]
Abstract
Hypophosphatasia (HPP) is an inherited disease caused by genetic mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP). This results in defects in bone and tooth mineralization. We recently demonstrated that TNALP-deficient (Akp2 (-/-) ) mice, which mimic the phenotype of the severe infantile form of HPP, can be treated by intravenous injection of a recombinant adeno-associated virus (rAAV) expressing bone-targeted TNALP with deca-aspartates at the C-terminus (TNALP-D10) driven by the tissue-nonspecific CAG promoter. To develop a safer and more clinically applicable transduction strategy for HPP gene therapy, we constructed a self-complementary type 8 AAV (scAAV8) vector that expresses TNALP-D10 via the muscle creatine kinase (MCK) promoter (scAAV8-MCK-TNALP-D10) and examined the efficacy of muscle-directed gene therapy. When scAAV8-MCK-TNALP-D10 was injected into the bilateral quadriceps of neonatal Akp2 (-/-) mice, the treated mice grew well and survived for more than 3 months, with a healthy appearance and normal locomotion. Improved bone architecture, but limited elongation of the long bone, was demonstrated on X-ray images. Micro-CT analysis showed hypomineralization and abnormal architecture of the trabecular bone in the epiphysis. These results suggest that rAAV-mediated, muscle-specific expression of TNALP-D10 represents a safe and practical option to treat the severe infantile form of HPP.
Collapse
Affiliation(s)
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Atsushi Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan; Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan
| | - Yukihiko Hirai
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Osamu Iijima
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Noriko Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Kumi Adachi
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | | | - Hideaki Kinoshita
- Department of Dental Materials Science, Tokyo Dental College , Tokyo, Japan
| | - Taku Noguchi
- Department of Anatomy, Tokyo Dental College , Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College , Tokyo, Japan
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California, USA
| | - Jose Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California, USA
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School , Tokyo, Japan
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW This review describes the evidence that supports the hypothesis that high-density lipoprotein (HDL) is atheroprotective due to its antiinflammatory effects and benefits on vascular health. RECENT FINDINGS Recent investigations have shown that HDL may inhibit atherosclerosis by promoting healthy endothelial function and by limiting or inhibiting the activation of macrophage and other immune cells. Receptors for HDL clearly regulate immune system function as well as cellular stress. Recent studies also suggest that participation of HDL in the process of reverse cholesterol transport may inhibit growth factor and cytokine receptor signaling by depleting cholesterol from lipid rafts. However, inflammation can also be associated with circulating dysfunctional HDL, which often possesses both prooxidative and proinflammatory properties. SUMMARY These studies suggest that HDL-based therapeutics have potential in treating both acute and chronic conditions associated with inflammation. These studies also reveal several other pathways that may be targeted for therapeutic drug development.
Collapse
|
3
|
Santos-Gallego CG, Torres F, Badimón JJ. The beneficial effects of HDL-C on atherosclerosis: rationale and clinical results. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.10.90] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Kassim SH, Wilson JM, Rader DJ. Gene therapy for dyslipidemia: a review of gene replacement and gene inhibition strategies. CLINICAL LIPIDOLOGY 2010; 5:793-809. [PMID: 22505953 PMCID: PMC3324780 DOI: 10.2217/clp.10.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite numerous technological and pharmacological advances and more detailed knowledge of molecular etiologies, cardiovascular diseases remain the leading cause of morbidity and mortality worldwide claiming over 17 million lives a year. Abnormalities in the synthesis, processing and catabolism of lipoprotein particles can result in severe hypercholesterolemia, hypertriglyceridemia or low HDL-C. Although a plethora of antidyslipidemic pharmacological agents are available, these drugs are relatively ineffective in many patients with Mendelian lipid disorders, indicating the need for new and more effective interventions. In vivo somatic gene therapy is one such intervention. This article summarizes current strategies being pursued for the development of clinical gene therapy for dyslipidemias that cannot effectively be treated with existing drugs.
Collapse
Affiliation(s)
- Sadik H Kassim
- University of Pennsylvania School of Medicine, Gene Therapy Program, Department of Pathology & Laboratory Medicine, 125 South 31st Street (Suite 2000), PA 19104, USA
| | - James M Wilson
- University of Pennsylvania School of Medicine, Gene Therapy Program, Department of Pathology & Laboratory Medicine, 125 South 31st Street (Suite 2000), PA 19104, USA
| | - Daniel J Rader
- University of Pennsylvania School of Medicine, Gene Therapy Program, Department of Pathology & Laboratory Medicine, 125 South 31st Street (Suite 2000), PA 19104, USA
| |
Collapse
|