1
|
Zheng Y, Shao M, Zheng Y, Sun W, Qin S, Sun Z, Zhu L, Guan Y, Wang Q, Wang Y, Li L. PPARs in atherosclerosis: The spatial and temporal features from mechanism to druggable targets. J Adv Res 2025; 69:225-244. [PMID: 38555000 PMCID: PMC11954843 DOI: 10.1016/j.jare.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic and complex disease caused by lipid disorder, inflammation, and other factors. It is closely related to cardiovascular diseases, the chief cause of death globally. Peroxisome proliferator-activated receptors (PPARs) are valuable anti-atherosclerosis targets that showcase multiple roles at different pathological stages of atherosclerosis and for cell types at different tissue sites. AIM OF REVIEW Considering the spatial and temporal characteristics of the pathological evolution of atherosclerosis, the roles and pharmacological and clinical studies of PPARs were summarized systematically and updated under different pathological stages and in different vascular cells of atherosclerosis. Moreover, selective PPAR modulators and PPAR-pan agonists can exert their synergistic effects meanwhile reducing the side effects, thereby providing novel insight into future drug development for precise spatial-temporal therapeutic strategy of anti-atherosclerosis targeting PPARs. KEY SCIENTIFIC Concepts of Review: Based on the spatial and temporal characteristics of atherosclerosis, we have proposed the importance of stage- and cell type-dependent precision therapy. Initially, PPARs improve endothelial cells' dysfunction by inhibiting inflammation and oxidative stress and then regulate macrophages' lipid metabolism and polarization to improve fatty streak. Finally, PPARs reduce fibrous cap formation by suppressing the proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, research on the cell type-specific mechanisms of PPARs can provide the foundation for space-time drug treatment. Moreover, pharmacological studies have demonstrated that several drugs or compounds can exert their effects by the activation of PPARs. Selective PPAR modulators (that specifically activate gene subsets of PPARs) can exert tissue and cell-specific effects. Furthermore, the dual- or pan-PPAR agonist could perform a better role in balancing efficacy and side effects. Therefore, research on cells/tissue-specific activation of PPARs and PPAR-pan agonists can provide the basis for precision therapy and drug development of PPARs.
Collapse
Affiliation(s)
- Yi Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ziwei Sun
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Hu Y, Jiang Y, Zhang Z, Wang J, Zhang B, Gong L, Ji L, Pu Z, Yang X, Zou J, Yin Y. Oncogenic Activity of Glucocorticoid Receptor β Is Controlled by Ubiquitination-Dependent Interaction with USP49 in Glioblastoma Cells. Mol Cancer Res 2022; 20:92-101. [PMID: 34610959 PMCID: PMC9398152 DOI: 10.1158/1541-7786.mcr-20-1068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/20/2021] [Accepted: 09/28/2021] [Indexed: 01/07/2023]
Abstract
Previous studies have demonstrated that glucocorticoid receptor β (GRβ) functions as an oncoprotein, regulating the malignant phenotypes and stem-like cell maintaining in human glioblastoma (GBM). Of the glucocorticoid receptor (GR) isoforms, GRβ and GRα are highly homologous, though the mechanism underlying the distinct functions of these two isoforms in GBM has not been clarified. Here by establishing a carboxyl-terminal (COOH-terminal) deletion mutant, we determined that GRβ can be ubiquitinated. We also found that its COOH terminal is essential for this ubiquitination. The mutation of a lysine to arginine at residue 733 (K733R) blocked the ubiquitination of GRβ, indicating that K733 is a key site for ubiquitination. Using K733R to establish nonubiquitinated GRβ, we demonstrated that ubiquitination not only regulates the stability and nuclear translocation of GRβ, but is also a vital mechanism for its oncogenic functions in vitro and in vivo. Protein interaction assay further indicated that ubiquitin-specific protease 49 (USP49) is a GRβ-binding protein and the interaction depends on GRβ ubiquitination. USP49 knockdown resulted in a decrease of cell proliferation, invasion, and an increase of cell apoptosis. More importantly, USP49 knockdown increased ubiquitination and amplified the oncogenic effects of GRβ, confirming the decisive role of ubiquitination on GRβ carcinogenicity. Taken together, these findings established that ubiquitination is a vial process for GRβ the execution of oncogenic functions in GBM and that the K733 site is crucial for ubiquitination of GRβ. IMPLICATIONS: This work is the first identify of the activation GRβ by a single lysine point-mediated ubiquitination and proteasome degradation, which determines its oncogenic functions in GBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian Zou
- Corresponding Authors: Jian Zou, Center of Clinical Research, The Affiliated Wuxi People's Hospital, Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, Jiangsu, China. Phone: 86510-8535-0368; E-mail: ; and Ying Yin, Phone: 510-8535-0363; E-mail:
| | - Ying Yin
- Corresponding Authors: Jian Zou, Center of Clinical Research, The Affiliated Wuxi People's Hospital, Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, Jiangsu, China. Phone: 86510-8535-0368; E-mail: ; and Ying Yin, Phone: 510-8535-0363; E-mail:
| |
Collapse
|
3
|
Tian Y, Li J, Tian X, Zeng X. Using the co-expression network of T cell-activation-related genes to assess the disease activity in Takayasu's arteritis patients. Arthritis Res Ther 2021; 23:303. [PMID: 34915894 PMCID: PMC8675511 DOI: 10.1186/s13075-021-02636-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/28/2021] [Indexed: 02/02/2023] Open
Abstract
Background There have been lacking reliable serum biomarkers in assessing the disease activity of Takayasu’s arteritis (TAK). This study aimed to assess the disease activity of TAK by assayed gene expression levels in peripheral mononuclear cells (PBMCs). Methods The expression level of genes that essential in T cell activation in PBMCs in active TAK patients, inactive TAK patients, and healthy controls were detected by real-time fluorescence quantitative polymerase chain reaction, including TCR, CD28, CD40, CD40L, PD-1, PD-L1, PD-L2, CTLA4, TIGIT, TIM3, LAG3, CCL5, T-bet, RORC, and FOXP3. Gene co-expression network was established, and the signature of the topology structure in active TAK patients compared to the inactive TAK patients were extracted and described by formulas. Respectively, the disease activity was assessed by the routine serum biomarkers, including ESR, CRP, IL-6, and TNF-α, the gene expression level of TCR, CD28, T-bet, and RORC, as well as the signature of the topology structure, and the diagnostic efficacies were compared. Results Compared with the inactive TAK patient group, the active TAK patient group had a greater clustering coefficient in the network consisting of genes that essential in T cell activation. When assessing the disease activity used this signature of topology structure, the sensitivity was 90.9%, the specificity was 100%, and the AUC was 0.98, which was greater than the AUCs of these biomarkers. Conclusions The signature of the topology structure could distinguish the active TAK patients from inactive TAK patients. This maybe is a novel evaluation algorithm of disease activity. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02636-2.
Collapse
Affiliation(s)
- Yixiao Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai-Fu-yuan, Dongcheng District, Beijing, 100730, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai-Fu-yuan, Dongcheng District, Beijing, 100730, China.
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai-Fu-yuan, Dongcheng District, Beijing, 100730, China.
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuai-Fu-yuan, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
4
|
Hu X, Zhao Y, Yang Y, Gong W, Sun X, Yang L, Zhang Q, Jin M. Akkermansia muciniphila Improves Host Defense Against Influenza Virus Infection. Front Microbiol 2021; 11:586476. [PMID: 33603716 PMCID: PMC7884316 DOI: 10.3389/fmicb.2020.586476] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza virus infection can alter the composition of the gut microbiota, while its pathogenicity can, in turn, be highly influenced by the gut microbiota. However, the details underlying these associations remain to be determined. The H7N9 influenza virus is an emerging zoonotic pathogen which has caused the death of 616 humans and has incurred huge losses in the poultry industry. Here, we investigated the effects of infection with highly pathogenic H7N9 on gut microbiota and determined potential anti-influenza microbes. 16S rRNA sequencing results show that H7N9 infection alters the mouse gut microbiota by promoting the growth of Akkermansia, Ruminococcus 1, and Ruminococcaceae UCG-010, and reducing the abundance of Rikenellaceae RC9 gut group and Lachnoclostridium. Although the abundance of Akkermansia muciniphila is positively related to H7N9 infection, the oral administration of cultures, especially of pasteurized A. muciniphila, can significantly reduce weight loss and mortality caused by H7N9 infection in mice. Furthermore, oral administration of live or pasteurized A. muciniphila significantly reduces pulmonary viral titers and the levels IL-1β and IL-6 but enhances the levels of IFN-β, IFN-γ, and IL-10 in H7N9-infected mice, suggesting that the anti-influenza role of A. muciniphila is due to its anti-inflammatory and immunoregulatory properties. Taken together, we showed that the changes in the gut microbiota are associated with H7N9 infection and demonstrated the anti-influenza role of A. muciniphila, which enriches current knowledge about how specific gut bacterial strains protect against influenza infection and suggests a potential anti-influenza probiotic.
Collapse
Affiliation(s)
- Xiaotong Hu
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ya Zhao
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yong Yang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenxiao Gong
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Yang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiang Zhang
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
5
|
Matsumoto T, Takayanagi K, Kojima M, Taguchi K, Kobayashi T. Toll-Like Receptor 4 Inhibitor TAK-242 Augments Acetylcholine-Induced Relaxation in Superior Mesenteric Arteries of the Streptozotocin-Induced Diabetic Rat. Biol Pharm Bull 2020; 43:1283-1287. [DOI: 10.1248/bpb.b20-00328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Keisuke Takayanagi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Mihoka Kojima
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
6
|
Zhang Q, Huang J, Yu J, Xu Z, Liu L, Song Y, Sun X, Zhang A, Jin M. HP1330 Contributes to Streptococcus suis Virulence by Inducing Toll-Like Receptor 2- and ERK1/2-Dependent Pro-inflammatory Responses and Influencing In Vivo S. suis Loads. Front Immunol 2017; 8:869. [PMID: 28824616 PMCID: PMC5534446 DOI: 10.3389/fimmu.2017.00869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022] Open
Abstract
Streptococcus suis 2 (SS2) has evolved into a highly invasive pathogen responsible for two large-scale outbreaks of streptococcal toxic shock-like syndrome (STSLS) in China. Excessive inflammation stimulated by SS2 is considered a hallmark of STSLS, even it also plays important roles in other clinical symptoms of SS2-related disease, including meningitis, septicemia, and sudden death. However, the mechanism of SS2-caused excessive inflammation remains poorly understood. Here, a novel pro-inflammatory protein was identified (HP1330), which could induce robust expression of pro-inflammatory cytokines (TNF-α, MCP-1, and IL-1β) in RAW264.7 macrophages. To evaluate the role of HP1330 in SS2 virulence, an hp1330-deletion mutant (Δhp1330) was constructed. In vitro, hp1330 disruption led to a decreased pro-inflammatory ability of SS2 in RAW 264.7 macrophages. In vivo, Δhp1330 showed reduced lethality, pro-inflammatory activity, and bacterial loads in mice. To further elucidate the mechanism of HP1330-induced pro-inflammatory cytokine production, antibody blocking and gene-deletion experiments with macrophages were performed. The results revealed that the pro-inflammatory activity of HP1330 depended on the recognition of toll-like receptor 2 (TLR2). Furthermore, a specific inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways could significantly decrease HP1330-induced pro-inflammatory cytokine production, and western blot analysis showed that HP1330 could induce activation of the ERK1/2 pathway. Taken together, our findings demonstrate that HP1330 contributes to SS2 virulence by inducing TLR2- and ERK1/2-dependent pro-inflammatory cytokine production and influencing in vivo bacterial loads, implying that HP1330 may be associated with STSLS caused by SS2.
Collapse
Affiliation(s)
- Qiang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Junping Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhongmin Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Liang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yajing Song
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Anding Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
7
|
Chou CA, Ng HY, Kuo WH, Chiou TYT, Pei SN, Li LC, Lee YT, Lee CT. Rosiglitazone attenuates indoxyl sulphate-induced endothelial dysfunction. Clin Exp Pharmacol Physiol 2015; 42:287-92. [PMID: 25482161 DOI: 10.1111/1440-1681.12351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/02/2014] [Accepted: 11/26/2014] [Indexed: 11/29/2022]
Abstract
Indoxyl sulphate is a protein-bound uraemic toxin that has deleterious effects on the cardiovascular system. Rosiglitazone (RGZ) is an insulin sensitizer used for glycaemic control in type 2 diabetes. Rosiglitazone has been shown to be beneficial for cardiovascular disease because of its pleiotropic effects. Whether RGZ can improve indoxyl sulphate-induced endothelial damage has not been investigated. In the present in vitro study, we examined the effects of RGZ on indoxyl sulphate-induced endothelial injury. Endothelial cells were exposed to RGZ (5 and 10 μmol/L) and then treated with indoxyl sulphate (100 and 1000 μmol/L) for 48 h. Indoxyl sulphate upregulated intracellular cell adhesion molecule-1, vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 expression. Indoxyl sulphate also increased the abundance of NADPH oxidase 4 (NOX4) and nuclear factor (NF)-κB. Both extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) signalling pathways were activated after 48 h treatment with indoxyl sulphate. Pretreatment of cells with both concentrations of RGZ improved indices of endothelial injury. In addition, RGZ attenuated the increase in NOX4 and NF-κB and prevented the activation of the ERK1/2 and p38 MAPK signalling pathways. We conclude that RGZ ameliorates indoxyl sulphate-induced endothelial injury.
Collapse
Affiliation(s)
- Chia-An Chou
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang Q, Yang Y, Yan S, Liu J, Xu Z, Yu J, Song Y, Zhang A, Jin M. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway. Front Microbiol 2015; 6:178. [PMID: 25806027 PMCID: PMC4353370 DOI: 10.3389/fmicb.2015.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/18/2015] [Indexed: 12/29/2022] Open
Abstract
Streptococcus suis 2 is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for the high levels of early mortality observed in septic shock-like syndrome cases. However, the mechanisms through which S. suis 2 (SS2) causes excessive inflammation remain unclear. Thus, this study aimed to identify novel pro-inflammatory mediators that play important roles in the development of therapies against SS2 infection. In this study, the novel pro-inflammatory protein HP0459, which was encoded by the SSUSC84_0459 gene, was discovered. The stimulation of RAW 264.7 macrophages with recombinant HP0459 protein induced the expression of pro-inflammatory cytokines (IL-1β, MCP-1 and TNF-α). Compared with the wild-type (WT) strain, the isogenic knockout of HP0459 in SS2 led to reduced production of pro-inflammatory cytokines in RAW264.7 macrophages and in vivo. The pro-inflammatory activity of HP0459 was significantly reduced by an antibody against Toll-like receptor 2 (TLR2) in RAW264.7 macrophages and was lower in TLR2-deficient (TLR2-/-) macrophages than in WT macrophages. Furthermore, specific inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways significantly decreased the HP0459-induced pro-inflammatory cytokine production, and a western blot assay showed that HP0459 stimulation induced the activation of the ERK1/2 pathway. Taken together, our data indicate that HP0459 is a novel pro-inflammatory mediator of SS2 and induces TLR2-dependent pro-inflammatory activity in RAW264.7 macrophages through the ERK1/2 pathway.
Collapse
Affiliation(s)
- Qiang Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Yujie Yang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Shuxian Yan
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Jiantao Liu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Zhongmin Xu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Junping Yu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Yajing Song
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Anding Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Meilin Jin
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China ; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture Wuhan, China
| |
Collapse
|
9
|
Wang F, Sun JR, Huang MY, Wang HY, Sun PH, Lin J, Chen WM. Design, synthesis and anti-inflammatory evaluation of novel 5-benzylidene-3,4-dihalo-furan-2-one derivatives. Eur J Med Chem 2014; 72:35-45. [DOI: 10.1016/j.ejmech.2013.10.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022]
|
10
|
Kuo TY, Huang CL, Yang JM, Huang WJ, Huang NK, Chen YW, Lin RJ, Yang YC. The role of ribosylated-BSA in regulating PC12 cell viability. Cell Biol Toxicol 2012; 28:255-67. [DOI: 10.1007/s10565-012-9220-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 04/13/2012] [Indexed: 01/06/2023]
|