1
|
Barrera-Chimal J, Bonnard B, Jaisser F. Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases. Annu Rev Physiol 2022; 84:585-610. [PMID: 35143332 DOI: 10.1146/annurev-physiol-060821-013950] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mineralocorticoid receptor (MR) activation in the heart and vessels leads to pathological effects, such as excessive extracellular matrix accumulation, oxidative stress, and sustained inflammation. In these organs, the MR is expressed in cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and inflammatory cells. We review the accumulating experimental and clinical evidence that pharmacological MR antagonism has a positive impact on a battery of cardiac and vascular pathological states, including heart failure, myocardial infarction, arrhythmic diseases, atherosclerosis, vascular stiffness, and cardiac and vascular injury linked to metabolic comorbidities and chronic kidney disease. Moreover, we present perspectives on optimization of the use of MR antagonists in patients more likely to respond to such therapy and review the evidence suggesting that novel nonsteroidal MR antagonists offer an improved safety profile while retaining their cardiovascular protective effects. Finally, we highlight future therapeutic applications of MR antagonists in cardiovascular injury.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France;
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; .,INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN INI-CRCT), Université de Lorraine, Nancy, France
| |
Collapse
|
2
|
Mamazhakypov A, Hein L, Lother A. Mineralocorticoid receptors in pulmonary hypertension and right heart failure: From molecular biology to therapeutic targeting. Pharmacol Ther 2021; 231:107987. [PMID: 34480966 DOI: 10.1016/j.pharmthera.2021.107987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Pulmonary hypertension (PH) is a devastating condition characterized by pulmonary vascular remodelling, leading to progressive increase in pulmonary artery pressure and subsequent right ventricular failure. Aldosterone and the mineralocorticoid receptor (MR), a nuclear transcription factor, are key drivers of cardiovascular disease and MR antagonists are well-established in heart failure. Now, a growing body of evidence points at a detrimental role of MR in PH. Pharmacological MR blockade attenuated PH and prevented RV failure in experimental models. Mouse models with cell selective MR deletion suggest that this effect is mediated by MR in endothelial cells. While the evidence from experimental studies appears convincing, the available clinical data on MR antagonist use in patients with PH is more controversial. Integrated analysis of clinical data together with MR-dependent molecular alterations may provide insights why some patients respond to MRA treatment while others do not. Potential ways to identify MRA 'responders' include the analysis of underlying PH causes, stage of disease, or sex, as well as new biomarkers.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany; Heart Center Freiburg University, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
3
|
Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid Receptor and Cardiovascular Disease. Am J Hypertens 2018; 31:1165-1174. [PMID: 30192914 DOI: 10.1093/ajh/hpy120] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Activation of the mineralocorticoid receptor (MR) in the distal nephron by its ligand, aldosterone, plays an important role in sodium reabsorption and blood pressure regulation. However, expression of the MR goes beyond the kidney. It is expressed in a variety of other tissues in which its activation could lead to tissue injury. Indeed, MR activation in the cardiovascular (CV) system has been shown to promote hypertension, fibrosis, and inflammation. Pharmacological blockade of the MR has protective effects in several animal models of CV disease. Furthermore, the use of MR antagonists is beneficial for heart failure patients, preventing mortality and morbidity. A better understanding of the implications of the MR in the setting of CV diseases is critical for refining treatments and improving patient care. The mechanisms involved in the deleterious effects of MR activation are complex and include oxidative stress, inflammation, and fibrosis. This review will discuss the pathological role of the MR in the CV system and the major mechanisms underlying it.
Collapse
Affiliation(s)
- Mathieu Buonafine
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
| | - Benjamin Bonnard
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
| | - Frédéric Jaisser
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
- INSERM, Clinical Investigation Centre, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, RHU Fight-HF, Nancy, France
| |
Collapse
|
4
|
Ghrelin Ameliorates Angiotensin II-Induced Myocardial Fibrosis by Upregulating Peroxisome Proliferator-Activated Receptor Gamma in Young Male Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9897581. [PMID: 30175152 PMCID: PMC6098901 DOI: 10.1155/2018/9897581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023]
Abstract
Angiotensin (Ang) II contributes to the formation and development of myocardial fibrosis. Ghrelin, a gut peptide, has demonstrated beneficial effects against cardiovascular disease. In the present study, we explored the effect and related mechanism of Ghrelin on myocardial fibrosis in Ang II-infused rats. Adult Sprague-Dawley (SD) rats were divided into 6 groups: Control, Ang II (200ng/kg/min, microinfusion), Ang II+Ghrelin (100 μg/kg, subcutaneously twice daily), Ang II+Ghrelin+GW9662 (a specific PPAR-γ inhibitor, 1 mg/kg/d, orally), Ang II+GW9662, and Ghrelin for 4 wks. In vitro, adult rat cardiac fibroblasts (CFs) were pretreated with or without Ghrelin, Ghrelin+GW9662, or anti-Transforming growth factor (TGF)-β1 antibody and then stimulated with or without Ang II (100 nmol/L) for 24 h. Ang II infusion significantly increased myocardial fibrosis, expression of collagen I, collagen III, and TGF-β1, as well as TGF-β1 downstream proteins p-Smad2, p-Smad3, TRAF6, and p-TAK1 (all p<0.05). Ghrelin attenuated these effects. Similar results were seen in Ang II-stimulated rat cardiac fibroblasts in vitro. In addition, Ghrelin upregulated PPAR-γ expression in vivo and in vitro, and treatment with GW9662 counteracted the effects of Ghrelin. In conclusion, Ghrelin ameliorated Ang II-induced myocardial fibrosis by upregulating PPAR-γ and in turn inhibiting TGF-β1signaling.
Collapse
|
5
|
Abstract
Myocardial injury, mechanical stress, neurohormonal activation, inflammation, and/or aging all lead to cardiac remodeling, which is responsible for cardiac dysfunction and arrhythmogenesis. Of the key histological components of cardiac remodeling, fibrosis either in the form of interstitial, patchy, or dense scars, constitutes a key histological substrate of arrhythmias. Here we discuss current research findings focusing on the role of fibrosis, in arrhythmogenesis. Numerous studies have convincingly shown that patchy or interstitial fibrosis interferes with myocardial electrophysiology by slowing down action potential propagation, initiating reentry, promoting after-depolarizations, and increasing ectopic automaticity. Meanwhile, there has been increasing appreciation of direct involvement of myofibroblasts, the activated form of fibroblasts, in arrhythmogenesis. Myofibroblasts undergo phenotypic changes with expression of gap-junctions and ion channels thereby forming direct electrical coupling with cardiomyocytes, which potentially results in profound disturbances of electrophysiology. There is strong evidence that systemic and regional inflammatory processes contribute to fibrogenesis (i.e., structural remodeling) and dysfunction of ion channels and Ca2+ homeostasis (i.e., electrical remodeling). Recognizing the pivotal role of fibrosis in the arrhythmogenesis has promoted clinical research on characterizing fibrosis by means of cardiac imaging or fibrosis biomarkers for clinical stratification of patients at higher risk of lethal arrhythmia, as well as preclinical research on the development of antifibrotic therapies. At the end of this review, we discuss remaining key questions in this area and propose new research approaches. © 2017 American Physiological Society. Compr Physiol 7:1009-1049, 2017.
Collapse
Affiliation(s)
- My-Nhan Nguyen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiao-Ming Gao
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Heggermont WA, Goethals M, Dierckx R, Verstreken S, Bartunek J, Vanderheyden M. Should MRAs be at the front row in heart failure? A plea for the early use of mineralocorticoid receptor antagonists in medical therapy for heart failure based on clinical experience. Heart Fail Rev 2016; 21:699-701. [PMID: 27620301 DOI: 10.1007/s10741-016-9583-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The brand new 2016 ESC guidelines for the treatment of acute and chronic heart failure continue to give a prominent place to mineralocorticoid receptor antagonists in the treatment of chronic heart failure with reduced ejection fraction (HFrEF). In the prevention of HF hospitalization and death, a class I, level of recommendation A, is given to MRAs for patients with HFrEF, who remain symptomatic despite treatment with an ACE-inhibitor and a beta-blocker and have an LVEF below 35 %. This recommendation is primarily based on two landmark trials, the RALES trial (for spironolactone) and the EMPHASIS-HF trial (for eplerenone). A crucial question is, however, why MRAs are advised only in "third place," i.e., after optimal up-titration of ACE-inhibitors and beta-blockers. We wonder whether MRAs could not or should not be given earlier in the treatment of HFrEF, namely before or together with the up-titration of ACE-inhibitors and beta-blockers. Several arguments to support this plea are described in this short paper.
Collapse
Affiliation(s)
- Ward A Heggermont
- Cardiovascular Center, OLV Ziekenhuis Aalst, Moorselbaan 164, 9300, Aalst, Belgium.
| | - Marc Goethals
- Cardiovascular Center, OLV Ziekenhuis Aalst, Moorselbaan 164, 9300, Aalst, Belgium
| | - Riet Dierckx
- Cardiovascular Center, OLV Ziekenhuis Aalst, Moorselbaan 164, 9300, Aalst, Belgium
| | - Sofie Verstreken
- Cardiovascular Center, OLV Ziekenhuis Aalst, Moorselbaan 164, 9300, Aalst, Belgium
| | - Jozef Bartunek
- Cardiovascular Center, OLV Ziekenhuis Aalst, Moorselbaan 164, 9300, Aalst, Belgium
| | - Marc Vanderheyden
- Cardiovascular Center, OLV Ziekenhuis Aalst, Moorselbaan 164, 9300, Aalst, Belgium
| |
Collapse
|
7
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|