1
|
Mustafa NH, Jalil J, Saleh MSM, Zainalabidin S, Asmadi AY, Kamisah Y. Parkia speciosa Hassk. Empty Pod Extract Prevents Cardiomyocyte Hypertrophy by Inhibiting MAPK and Calcineurin-NFATC3 Signaling Pathways. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010043. [PMID: 36675993 PMCID: PMC9864749 DOI: 10.3390/life13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Cardiac hypertrophy is an early hallmark during the clinical course of heart failure. Therapeutic strategies aiming to alleviate cardiac hypertrophy via the mitogen-activated protein kinase (MAPK)/calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway may help prevent cardiac dysfunction. Previously, empty pod ethanol crude extract of Parkia speciosa Hassk was shown to demonstrate protective effects against cardiomyocyte hypertrophy. Therefore, the current study aimed to investigate the effects of various fractions of the plant ethanol extract on the MAPK/NFAT signaling pathway in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. Simultaneous treatment with ethyl acetate (EA) fraction produced the most potent antihypertrophic effect evidenced by the reduced release of B-type natriuretic peptide (BNP). Subsequently, treatment with the EA fraction (6.25, 12.5, and 25 μg/mL) prevented an Ang II-induced increase in cell surface area, hypertrophic factors (atrial natriuretic peptide and BNP), reactive oxygen species, protein content, and NADPH oxidase 4 expression in the cells. Furthermore, EA treatment attenuated the activation of the MAPK pathway and calcineurin-related pathway (GATA-binding protein 4 and NFATC3), which was similar to the effects of valsartan (positive control). Our findings indicate that the EA fraction prevents Ang II-induced cardiac hypertrophy by regulating the MAPK/calcineurin-NFAT signaling pathway.
Collapse
Affiliation(s)
- Nor Hidayah Mustafa
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mohammed S. M. Saleh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Ahmad Yusof Asmadi
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence: or ; Tel.: +603-9145-9575; Fax: +603-9145-9547
| |
Collapse
|
2
|
Lu B, Xie J, Fu D, Chen X, Zhao M, Gui M, Yao L, Zhou X, Li J. Huoxue Qianyang Qutan recipe attenuates cardiac fibrosis by inhibiting the NLRP3 inflammasome signalling pathway in obese hypertensive rats. PHARMACEUTICAL BIOLOGY 2021; 59:1045-1057. [PMID: 34362291 PMCID: PMC8354174 DOI: 10.1080/13880209.2021.1953541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT HuoXue QianYang QuTan Recipe (HQQR) is used to manage hypertension and cardiac remodelling, but the mechanism is elusive. OBJECTIVE To determine the mechanism of HQQR on obesity hypertension (OBH)-related myocardial fibrosis. MATERIALS AND METHODS OBH models were prepared using spontaneously hypertensive rats (SHRs) and divided (n = 6) into saline, low-dose (19.35 g/kg/d) HQQR, high-dose (38.7 g/kg/d) HQQR, and valsartan (30 mg/kg/d) groups for 10 weeks. Systolic blood pressure (SBP), and Lee's index were measured. Heart tissues were examined by histology. HQQR's effects were examined on cardiac fibroblasts (CFs) stimulated with angiotensin II and treated with HQQR, a caspase-1 inhibitor, siNLRP3, and oeNLRP3. RESULTS HQQR(H) reduced SBP (201.67 ± 21.00 vs. 169.00 ± 10.00), Lee's index (321.50 ± 3.87 vs. 314.58 ± 3.88), and left ventricle mass index (3.26 ± 0.27 vs. 2.71 ± 0.12) in vivo. HQQR reduced percentage of fibrosis area (18.99 ± 3.90 vs. 13.37 ± 3.39), IL-1β (10.07 ± 1.16 vs. 5.35 ± 1.29), and inhibited activation of NLRP3/caspase-1/IL-1β pathway. HQQR also inhibiting the proliferation (1.09 ± 0.02 vs. 0.84 ± 0.01), fibroblast to myofibroblast transition (14.74 ± 3.39 vs. 3.97 ± 0.53), and collagen deposition (Col I; 0.50 ± 0.02 vs. 0.27 ± 0.05 and Col III; 0.48 ± 0.21 vs. 0.26 ± 0.11) with different concentrations selected based on IC50 in vitro (all ps < 0.05). NLRP3 interference further confirmed HQQR inhibiting NLRP3 inflammasome signalling. CONCLUSION HQQR blunted cardiac fibrosis development in OBH and suppressed CFs proliferation by directly interfering with the NLRP3/caspase-1/IL-1β pathway.
Collapse
Affiliation(s)
- Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Xie
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaozhe Chen
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyi Zhao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Siti HN, Jalil J, Asmadi AY, Kamisah Y. Parkia speciosa Hassk. Empty Pod Extract Alleviates Angiotensin II-Induced Cardiomyocyte Hypertrophy in H9c2 Cells by Modulating the Ang II/ROS/NO Axis and MAPK Pathway. Front Pharmacol 2021; 12:741623. [PMID: 34721028 PMCID: PMC8551585 DOI: 10.3389/fphar.2021.741623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiac hypertrophy is characteristic of heart failure in patients who have experienced cardiac remodeling. Many medicinal plants, including Parkia speciosa Hassk., have documented cardioprotective effects against such pathologies. This study investigated the activity of P. speciosa empty pod extract against cardiomyocyte hypertrophy in H9c2 cardiomyocytes exposed to angiotensin II (Ang II). In particular, its role in modulating the Ang II/reactive oxygen species/nitric oxide (Ang II/ROS/NO) axis and mitogen-activated protein kinase (MAPK) pathway was examined. Treatment with the extract (12.5, 25, and 50 μg/ml) prevented Ang II-induced increases in cell size, NADPH oxidase activity, B-type natriuretic peptide levels, and reactive oxygen species and reductions in superoxide dismutase activity. These were comparable to the effects of the valsartan positive control. However, the extract did not significantly ameliorate the effects of Ang II on inducible nitric oxide synthase activity and nitric oxide levels, while valsartan did confer such protection. Although the extract decreased the levels of phosphorylated extracellular signal-related kinase, p38, and c-Jun N-terminal kinase, valsartan only decreased phosphorylated c-Jun N-terminal kinase expression. Phytochemical screening identified the flavonoids rutin (1) and quercetin (2) in the extract. These findings suggest that P. speciosa empty pod extract protects against Ang II-induced cardiomyocyte hypertrophy, possibly by modulating the Ang II/ROS/NO axis and MAPK signaling pathway via a mechanism distinct from valsartan.
Collapse
Affiliation(s)
- Hawa Nordin Siti
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Unit of Pharmacology, Department of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Yusof Asmadi
- Unit of Pharmacology, Faculty of Medicine and Defense Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Cardiovacular Health Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Abdelhaffez AS, Abd El-Aziz EA, Tohamy MB, Ahmed AM. N-acetyl cysteine can blunt metabolic and cardiovascular effects via down-regulation of cardiotrophin-1 in rat model of fructose-induced metabolic syndrome. Arch Physiol Biochem 2021:1-16. [PMID: 33507837 DOI: 10.1080/13813455.2021.1876735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the ability of N-acetyl cysteine (NAC) to alleviate the metabolic disorders in fructose-induced metabolic syndrome (MS) in male rats and to examine its protective effect on aortic and cardiac tissues via its influence on cardiotrophin-1 (CT-1) expression. NAC (20 mg/kg b.w./day) was administered to fructose induced MS animals for 12 weeks. Chronic fructose consumption (20% w/v) increased body weight gain, relative heart weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), insulin resistance (IR), and associated with metabolic alterations. Histological and immunohistochemical examination revealed aortic stiffness and myocardial degeneration and fibrosis together with increased CT-1 expression. Treatment with NAC improved IR, SBP, DBP, and mitigated dyslipidaemia and oxidative stress. Additionally, NAC down-regulated CT-1 expression in the heart and aorta. These findings demonstrated the protective effect of NAC against aortic and myocardial degeneration and fibrosis through down-regulation of CT-1 in fructose induced MS animal model.
Collapse
Affiliation(s)
- Azza S Abdelhaffez
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Ebtihal A Abd El-Aziz
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Maha B Tohamy
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Faculty of Medicine, Department of Pathology, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Ushakov A, Ivanchenko V, Gagarina A. Regulation of Myocardial Extracellular Matrix Dynamic Changes in Myocardial Infarction and Postinfarct Remodeling. Curr Cardiol Rev 2020; 16:11-24. [PMID: 31072294 PMCID: PMC7393593 DOI: 10.2174/1573403x15666190509090832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The article represents literature review dedicated to molecular and cellular mechanisms underlying clinical manifestations and outcomes of acute myocardial infarction. Extracellular matrix adaptive changes are described in detail as one of the most important factors contributing to healing of damaged myocardium and post-infarction cardiac remodeling. Extracellular matrix is reviewed as dynamic constantly remodeling structure that plays a pivotal role in myocardial repair. The role of matrix metalloproteinases and their tissue inhibitors in fragmentation and degradation of extracellular matrix as well as in myocardium healing is discussed. This review provides current information about fibroblasts activity, the role of growth factors, particularly transforming growth factor β and cardiotrophin-1, colony-stimulating factors, adipokines and gastrointestinal hormones, various matricellular proteins. In conclusion considering the fact that dynamic transformation of extracellular matrix after myocardial ischemic damage plays a pivotal role in myocardial infarction outcomes and prognosis, we suggest a high importance of further investigation of mechanisms underlying extracellular matrix remodeling and cell-matrix interactions in cardiovascular diseases.
Collapse
Affiliation(s)
- Alexey Ushakov
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Vera Ivanchenko
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Alina Gagarina
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
6
|
Miyoshi T, Nakamura K, Miura D, Yoshida M, Saito Y, Akagi S, Ohno Y, Kondo M, Ito H. Effect of LCZ696, a dual angiotensin receptor neprilysin inhibitor, on isoproterenol-induced cardiac hypertrophy, fibrosis, and hemodynamic change in rats. Cardiol J 2018; 26:575-583. [PMID: 29718530 DOI: 10.5603/cj.a2018.0048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent clinical studies have shown that treatment with LCZ696, a complex containing the angiotensin receptor blocker valsartan and neprilysin inhibitor sacubitril, improves the prognosis of heart failure patients with a reduced ejection fraction. This study evaluated whether LCZ696 affects left ventricular hypertrophy, fibrosis, and hemodynamics in isoproterenol (ISO)-treated rats compared with valsartan alone. METHODS Male Wistar rats received subcutaneous saline (n = 10), subcutaneous ISO (2.4 mg/kg/day; n = 10), subcutaneous ISO + oral LCZ696 (60 mg/kg/day; n = 20) (ISO-LCZ), or subcutaneous ISO + oral valsartan (30 mg/kg/day; n = 20) (ISO-VAL) for 7 days. RESULTS LCZ696 and valsartan did not significantly reduce the increased heart weight/body weight ratio in rats treated with ISO. Echocardiography showed that the deceleration time shortened by ISO was restored by LCZ696 but not valsartan alone (p = 0.01 vs. the ISO group). Histological analysis showed that cardiac interstitial fibrosis increased by ISO was decreased significantly by LCZ696 but not valsartan alone (control: 0.10 ± 0.14%; ISO: 0.41 ± 0.32%; ISO-LCZ: 0.19 ± 0.23% [p < 0.01 vs. the ISO group]; ISO-VAL: 0.34 ± 0.23% [p = 0.34 vs. the ISO group]). Quantitative polymerase chain reaction showed that mRNA expression of Tgfb1, Col1a1, Ccl2, and Anp increased by ISO was significantly attenuated by LCZ696 but not valsartan alone (p < 0.05 vs. the ISO group). CONCLUSIONS LCZ696 improves cardiac fibrosis, but not hypertrophy, caused by continuous exposure to ISO in rats.
Collapse
Affiliation(s)
- Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daiji Miura
- Department of Basic Medicine, Nagano College of Nursing, Komagane, Japan
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuko Ohno
- Department of Medical Technology, Kawasaki College of Allied Health Professions, Kurashiki, Japan
| | - Megumi Kondo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
7
|
Li X, Hu H, Wang Y, Xue M, Li X, Cheng W, Xuan Y, Yin J, Yang N, Yan S. Valsartan Upregulates Kir2.1 in Rats Suffering from Myocardial Infarction via Casein Kinase 2. Cardiovasc Drugs Ther 2016; 29:209-18. [PMID: 26095682 PMCID: PMC4522035 DOI: 10.1007/s10557-015-6598-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose Myocardial infarction (MI) results in an increased susceptibility to ventricular arrhythmias, due in part to decreased inward-rectifier K+ current (IK1), which is mediated primarily by the Kir2.1 protein. The use of renin-angiotensin-aldosterone system antagonists is associated with a reduced incidence of ventricular arrhythmias. Casein kinase 2 (CK2) binds and phosphorylates SP1, a transcription factor of KCNJ2 that encodes Kir2.1. Whether valsartan represses CK2 activation to ameliorate IK1 remodeling following MI remains unclear. Methods Wistar rats suffering from MI received either valsartan or saline for 7 days. The protein levels of CK2 and Kir2.1 were each detected via a Western blot analysis. The mRNA levels of CK2 and Kir2.1 were each examined via quantitative real-time PCR. Results CK2 expression was higher at the infarct border; and was accompanied by a depressed IK1/Kir2.1 protein level. Additionally, CK2 overexpression suppressed KCNJ2/Kir2.1 expression. By contrast, CK2 inhibition enhanced KCNJ2/Kir2.1 expression, establishing that CK2 regulates KCNJ2 expression. Among the rats suffering from MI, valsartan reduced CK2 expression and increased Kir2.1 expression compared with the rats that received saline treatment. In vitro, hypoxia increased CK2 expression and valsartan inhibited CK2 expression. The over-expression of CK2 in cells treated with valsartan abrogated its beneficial effect on KCNJ2/Kir2.1. Conclusions AT1 receptor antagonist valsartan reduces CK2 activation, increases Kir2.1 expression and thereby ameliorates IK1 remodeling after MI in the rat model.
Collapse
Affiliation(s)
- Xinran Li
- School of Medicine, Shandong University, Ji'nan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Valsartan Attenuates KIR2.1 by Downregulating the Th1 Immune Response in Rats Following Myocardial Infarction. J Cardiovasc Pharmacol 2016; 67:252-9. [DOI: 10.1097/fjc.0000000000000341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Li X, Hu H, Wang Y, Xue M, Li X, Cheng W, Xuan Y, Yin J, Yang N, Yan S. Valsartan ameliorates KIR2.1 in rats with myocardial infarction via the NF-κB-miR-16 pathway. Gene 2015; 590:201-9. [PMID: 26654716 DOI: 10.1016/j.gene.2015.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND MicroRNAs have an important role in regulating arrhythmogenesis. MicroRNA-16 (miR-16) is predicted to target KCNJ2. The regulation of miR-16 is primarily due to NF-κB. Whether valsartan could downregulate miR-16 via the inhibition of NF-κB after MI and whether miR-16 targets KCNJ2 remain unclear. METHODS MI rats received valsartan or saline for 7days. The protein levels of NF-κB p65, inhibitor κBα (IκBα), and Kir2.1 were detected by Western blot analysis. The mRNA levels of Kir2.1 and miR-16 were examined by quantitative real-time PCR. Whole cell patch-clamp techniques were applied to record IK1. RESULTS MiR-16 expression was higher in the infarct border, and was accompanied by a depressed IK1/KIR2.1 level. Additionally, miR-16 overexpression suppressed KCNJ2/KIR2.1 expression. In contrast, miR-16 inhibition or binding-site mutation enhanced KCNJ2/KIR2.1 expression, establishing KCNJ2 as a miR-16 target. In the MI rats, compared to saline treatment, valsartan reduced NF-κB p65 and miR-16 expression and increased IκBα and Kir2.1 expression. In vitro, angiotensin II increased miR-16 expression and valsartan inhibited it. Overexpressing miR-16 in cells treated with valsartan abrogated its beneficial effect on KCNJ2/Kir2.1. NF-κB activation directly upregulates miR-16 expression. CONCLUSIONS miR-16 controls KCNJ2 expression, and valsartan ameliorates Kir2.1 after MI partly depending on the NF-κB-miR-16 pathway.
Collapse
Affiliation(s)
- Xinran Li
- School of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Hesheng Hu
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Ji'nan, Shandong, China
| | - Ye Wang
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Ji'nan, Shandong, China
| | - Mei Xue
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Ji'nan, Shandong, China
| | - Xiaolu Li
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Ji'nan, Shandong, China
| | - Wenjuan Cheng
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Ji'nan, Shandong, China
| | - Yongli Xuan
- School of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Jie Yin
- School of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Na Yang
- School of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Suhua Yan
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Ji'nan, Shandong, China.
| |
Collapse
|
10
|
Meredith AJ, Dai DLY, Chen V, Hollander Z, Ng R, Kaan A, Tebbutt S, Ramanathan K, Cheung A, McManus BM. Circulating biomarker responses to medical management vs. mechanical circulatory support in severe inotrope-dependent acute heart failure. ESC Heart Fail 2015; 3:86-96. [PMID: 27774271 PMCID: PMC5063158 DOI: 10.1002/ehf2.12076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/28/2015] [Accepted: 10/16/2015] [Indexed: 11/23/2022] Open
Abstract
Background Severe inotrope‐dependent acute heart failure (AHF) is associated with poor clinical outcomes. There are currently no well‐defined blood biomarkers of response to treatment that can guide management or identify recovery in this patient population. In the present study, we characterized the levels of novel and emerging circulating biomarkers of heart failure in patients with AHF over the first 30 days of medical management or mechanical circulatory support (MCS). We hypothesized a shared a plasma proteomic treatment response would be identifiable in both patient groups, representing reversal of the AHF phenotype. Methods and results Time course plasma samples of the first 30 days of therapy, obtained from patients managed medically (n = 8) or with implantable MCS (n = 5), underwent semi‐targeted and candidate biomarker analyses, using multiple reaction monitoring (MRM) mass spectrometry, antibody arrays, and enzyme‐linked immunosorbent assays. Differentially expressed proteins were identified using robust limma for MRM and antibody array data. Patients managed medically or with implantable MCS had a shared proteomic signature of six plasma proteins: circulating cardiotrophin 1, cardiac troponin T, clusterin, and dickopff 1 increased, while levels of C‐reactive protein and growth differentiation factor 15 decreased in both groups over the 30 day time course. Conclusions We have characterized the temporal proteomic signature of clinical recovery in AHF patients managed medically or with MCS, over the first 30 days of treatment. Changes in biomarker expression over the time course of treatment may provide a basis for understanding the biological basis of AHF, potentially identifying novel markers and pathophysiologic mechanisms of recovery.
Collapse
Affiliation(s)
- Anna J Meredith
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada; PROOF Centre of ExcellenceVancouverCanada
| | | | | | | | - Raymond Ng
- PROOF Centre of ExcellenceVancouverCanada; Department of Computer ScienceUniversity of British ColumbiaVancouverCanada
| | - Annemarie Kaan
- School of Nursing University of British Columbia - Heart Centre at St Paul's Hospital Vancouver Canada
| | - Scott Tebbutt
- PROOF Centre of ExcellenceVancouverCanada; Department of MedicineUniversity of British ColumbiaVancouverCanada
| | | | - Anson Cheung
- Division of Surgery University of British Columbia Vancouver Canada
| | - Bruce M McManus
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada; PROOF Centre of ExcellenceVancouverCanada
| |
Collapse
|