1
|
Rached G, Saliba Y, Maddah D, Hajal J, Smayra V, Bakhos J, Groschner K, Birnbaumer L, Fares N. TRPC3 Regulates Islet Beta-Cell Insulin Secretion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204846. [PMID: 36642838 PMCID: PMC9951314 DOI: 10.1002/advs.202204846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Insulin release is tightly controlled by glucose-stimulated calcium (GSCa) through hitherto equivocal pathways. This study investigates TRPC3, a non-selective cation channel, as a critical regulator of insulin secretion and glucose control. TRPC3's involvement in glucose-stimulated insulin secretion (GSIS) is studied in human and animal islets. TRPC3-dependent in vivo insulin secretion is investigated using pharmacological tools and Trpc3-/- mice. TRPC3's involvement in islet glucose uptake and GSCa is explored using fluorescent glucose analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose and calcium imaging. TRPC3 modulation by a small-molecule activator, GSK1702934A, is evaluated in type 2 diabetic mice. TRPC3 is functionally expressed in human and mouse islet beta cells. TRPC3-controlled insulin secretion is KATP -independent and primarily mediated by diacylglycerol channel regulation of the cytosolic calcium oscillations following glucose stimulation. Conversely, glucose uptake in islets is independent of TRPC3. TRPC3 pharmacologic inhibition and knockout in mice lead to defective insulin secretion and glucose intolerance. Subsequently, TRPC3 activation through targeted small-molecule enhances insulin secretion and alleviates diabetes hallmarks in animals. This study imputes a function for TRPC3 at the onset of GSIS. These insights strengthen one's knowledge of insulin secretion physiology and set forth the TRPC3 channel as an appealing candidate for drug development in the treatment of diabetes.
Collapse
Affiliation(s)
- Gaëlle Rached
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Youakim Saliba
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Dina Maddah
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Joelle Hajal
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Viviane Smayra
- Faculty of MedicineSaint Joseph UniversitySaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Jules‐Joel Bakhos
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| | - Klaus Groschner
- Gottfried‐Schatz‐Research‐Centre‐BiophysicsMedical University of GrazGraz8010Austria
| | - Lutz Birnbaumer
- School of Medical SciencesInstitute of Biomedical Research (BIOMED)Catholic University of ArgentinaBuenos AiresC1107AAZArgentina
- Signal Transduction LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkDurhamNCC1107AAZUSA
| | - Nassim Fares
- Physiology and Pathophysiology Research LaboratoryPole of Technology and HealthFaculty of MedicineSaint Joseph University of BeirutPOBox. 17‐5208 ‐ Mar MikhaëlBeirut1104 2020Lebanon
| |
Collapse
|
2
|
Mitochondrial TRPC3 promotes cell proliferation by regulating the mitochondrial calcium and metabolism in renal polycystin-2 knockdown cells. Int Urol Nephrol 2019; 51:1059-1070. [PMID: 31012036 DOI: 10.1007/s11255-019-02149-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Previous studies indicate that autosomal dominant polycystic kidney disease (ADPKD) cells exhibited dysregulated calcium homeostasis and enhanced cell proliferation. TRPC3 has been shown to function in the modulation of calcium and sodium entry, but whether TRPC3 plays a role in cellular abnormalities of ADPKD cells has not been defined. METHODS Human conditionally immortalized proximal tubular epithelial cells and mouse IMCD3 cells were used with polycystin-2 (PC2, TRPP2) knockdown. Cell proliferation assay was used to detect the cell proliferations upon different treatments. QRT-PCR and western blotting were used to measure the expression profiles of TRPP2 and other proteins. High-resolution respirometry, enzymic activities and ROS levels were detected to reflect the mitochondrial functions. Calcium and sodium uptakes were measured using Fura2-AM and SBFI dyes. RESULTS We showed that PC2 knockdown promoted cell proliferation, ROS productions and ERK phosphorylation, compared with negative control. Meanwhile, we demonstrated that receptor-operated calcium entry (ROCE) exhibited less reductions compared with store-operated calcium entry (SOCE) upon PC2 knockdown. Inhibition of ROCE and SOCE by specific inhibitors partially reversed the enhanced cell proliferation, ROS productions and ERK phosphorylation induced by PC2 knockdown. Moreover, TRPC3 upregulation was observed upon PC2 knockdown, which acted as both SOC and ROC, promoting cation entry, cell proliferation and ERK phosphorylation. Furthermore, we showed that mitochondrial located TRPC3 was upregulated and modulating mitochondrial calcium uptake, thus promoting the ROS productions in the presence of PC2 knockdown. CONCLUSIONS We demonstrated that TRPC3 upregulation upon PC2 knockdown aggravated the mitochondrial abnormalities and cell proliferation by modulating mitochondrial calcium uptake. Targeting TRPC3 might be a promising target for ADPKD treatment.
Collapse
|
3
|
Bone Marrow-Derived Endothelial Progenitor Cells Contribute to Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats via Inhibition of Store-Operated Ca 2+ Channels. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4892349. [PMID: 30320134 PMCID: PMC6167576 DOI: 10.1155/2018/4892349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/19/2018] [Indexed: 11/17/2022]
Abstract
Purpose This study aimed to explore whether bone marrow- (BM-) derived endothelial progenitor cells (EPCs) contributing to monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH) in rats via modulating store-operated Ca2+ channels (SOC). Methods Sprague Dawley (SD) rats were assigned into MCT group (n = 30) and control group (n = 20). Rats in MCT group were subcutaneously administered with 60 mg/kg MCT solution, and rats in control group were injected with equal amount of vehicle. After 3 weeks of treatment, right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) of two groups were measured, and BM-derived EPCs were isolated. Immunochemistry identification and vasculogenesis detection of EPCs were then performed. [Ca2+]cyt measurement was performed to detect store-operated calcium entry (SOCE) in two groups, followed by determination of Orai and canonical transient receptor potential (TRPC) channels expression. Results After 3 weeks of treatment, there were significant increases in RVSP and RVHI in MCT group compared with control group, indicating that MCT successfully induced PAH in rats. Moreover, the SOCE ([Ca2+]cyt rise) in BM-derived EPCs of MCT group was lower than that of control group. Furthermore, the expression levels of Orai3, TRPC1, TRPC3, and TRPC6 in BM-derived EPCs were decreased in MCT group in comparison with control group. Conclusions The SOC activities were inhibited in BM-derived EPCs of MCT-treated rats. These results may be associated with the depressed expression of Orai3, TRPC1, TRPC3, and TRPC6, which are major mediators of SOC.
Collapse
|
4
|
Mao ZJ, Zhang QL, Shang J, Gao T, Yuan WJ, Qin LP. Shenfu Injection attenuates rat myocardial hypertrophy by up-regulating miR-19a-3p expression. Sci Rep 2018; 8:4660. [PMID: 29549288 PMCID: PMC5856750 DOI: 10.1038/s41598-018-23137-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022] Open
Abstract
Shenfu Injection (SFI) is a classical Chinese medicine used to treat heart failure. Our previous study demonstrated that miRNAs underwent changes in rats with myocardial hypertrophy induced by abdominal aortic constriction. Interestingly, there was a significant change in miR-19a-3p, whose target gene is known to be associated with MEF2 signaling. However, whether and how SFI regulates miR-19a-3p in the treatment of myocardial hypertrophy has not been investigated. The purpose of the present study was to investigate the regulatory effect of SFI on miR-19a-3p in MEF2 signaling in the rat hypertrophic myocardium. We found that the miR-19a-3p expression level was significantly decreased in the hypertrophic myocardium, and MEF2A was the target gene of miR-19a-3p. The protein expressions of MEF2A, β-MHC, BNP and TRPC1 were significantly increased in hypertrophic cardiomyocytes. MiR-19a-3p was up-regulated after SFI treatment, and the protein expressions of these genes were significantly decreased. In addition, miR-19a-3p over-expression in hypertrophic cardiomyocytes could decrease MEF2A mRNA and protein expressions, and anti-miR-19a-3p showed the opposite result. Our study provided substantial evidence that miR-19a-3p played a functional role in MEF2 signaling in myocardial hypertrophy. SFI attenuated cardiomyocyte hypertrophy probably through up-regulating or maintaining the miR-19a-3p levels and regulating the MEF2 signaling pathway.
Collapse
Affiliation(s)
- Zhu-Jun Mao
- Department of Pharmacognosy, Zhejiang Chinese Medical University School of Pharmacy, Hangzhou, 310053, ZJ, China
| | - Quan-Long Zhang
- Department of Pharmacognosy, Zhejiang Chinese Medical University School of Pharmacy, Hangzhou, 310053, ZJ, China
| | - Jia Shang
- Department of Physiology, Ningxia Medical University, Yinchuan, 750004, NX, China
| | - Ting Gao
- Department of Physiology, Ningxia Medical University, Yinchuan, 750004, NX, China
| | - Wen-Jun Yuan
- Department of Physiology, Ningxia Medical University, Yinchuan, 750004, NX, China. .,Department of Physiology, Second Military Medical University, Shanghai, 200433, China.
| | - Lu-Ping Qin
- Department of Pharmacognosy, Zhejiang Chinese Medical University School of Pharmacy, Hangzhou, 310053, ZJ, China.
| |
Collapse
|
5
|
Wang B, Xiong S, Lin S, Xia W, Li Q, Zhao Z, Wei X, Lu Z, Wei X, Gao P, Liu D, Zhu Z. Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3-Mediated Calcium Handling in the Vasculature From Hypertensive Rats. J Am Heart Assoc 2017; 6:e005812. [PMID: 28711865 PMCID: PMC5586301 DOI: 10.1161/jaha.117.005812] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mitochondrial Ca2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. METHODS AND RESULTS In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H2O2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. CONCLUSIONS Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca2+]mito, ROS production, and mitochondrial energy metabolism through targeting TRPC3.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Antihypertensive Agents/pharmacology
- Benzimidazoles/pharmacology
- Benzoates/pharmacology
- Blood Pressure
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Disease Models, Animal
- Energy Metabolism
- Hypertension/drug therapy
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxidation-Reduction
- Rats, Inbred SHR
- Rats, Inbred WKY
- Reactive Oxygen Species/metabolism
- TRPC Cation Channels/genetics
- TRPC Cation Channels/metabolism
- Telmisartan
- Time Factors
- Up-Regulation
- Vasoconstriction
Collapse
Affiliation(s)
- Bin Wang
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Shiqiang Xiong
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Shaoyang Lin
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Weijie Xia
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Qiang Li
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zhigang Zhao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Xing Wei
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zongshi Lu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Xiao Wei
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Peng Gao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zhiming Zhu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| |
Collapse
|
6
|
Gomart S, Gaudreau-Ménard C, Jespers P, Dilek OG, Hupkens E, Hanthazi A, Naeije R, Melot C, Labranche N, Dewachter L, Mc Entee K. Leptin-Induced Endothelium-Independent Vasoconstriction in Thoracic Aorta and Pulmonary Artery of Spontaneously Hypertensive Rats: Role of Calcium Channels and Stores. PLoS One 2017; 12:e0169205. [PMID: 28085954 PMCID: PMC5234800 DOI: 10.1371/journal.pone.0169205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023] Open
Abstract
Decreased leptin-induced endothelium-dependent vasodilation has been reported in spontaneously hypertensive rats (SHR). Here, we report leptin-induced vasoconstriction in endothelium-denuded pulmonary artery and thoracic aorta from SHR and sought to characterize calcium handling underlying these mechanisms. Vasoreactivity to leptin was evaluated on pulmonary artery and thoracic aorta rings from 18 weeks old male SHR with or without calcium free medium, caffeine + thapsigargin + carbonyl cyanide-4-trifluoromethoxyphenylhydrazone emptying intracellular calcium stores, nifedipine a voltage-gated calcium channel inhibitor, SKF-96365 a transient receptor potential cation channels (TRPC) inhibitor, wortmaninn, a phosphatidylinositide 3-kinases (PI3K) inhibitor, or PD98059 a mitogen-activated protein kinase kinase (MAPKK) inhibitor. Calcium imaging was performed on cultured vascular smooth muscle cells incubated with leptin in presence or not of wortmaninn or PD98059. Leptin induced vasoconstriction in denuded pulmonary artery and thoracic aorta from SHR. Response was abolished when intra- or extracellular calcium stores were emptied, after blocking TRPC or voltage-dependent calcium channels or when using MAPKK or PI3K inhibitors. In vascular smooth muscle cells, leptin increased intracellular calcium. This rise was higher in SHR and abolished by MAPKK or PI3K inhibitors. TRPC6 gene expression was upregulated in arteries from SHR. Leptin-induced vasoconstriction in denuded arteries of SHR requires intracellular stores and is TRPC- and voltage-gated calcium channels dependent. Intracellular calcium increase is more pronounced in spontaneously hypertensive rats.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Calcium/metabolism
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Hypertension/physiopathology
- Leptin/administration & dosage
- Leptin/metabolism
- Male
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Wistar
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Samantha Gomart
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Caroline Gaudreau-Ménard
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
- Faculty of Medicine, University of Montréal, Montréal, Canada
| | - Pascale Jespers
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Omer Gurkan Dilek
- Faculty of Veterinary Medicine, Department of Anatomy, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - Emeline Hupkens
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Aliénor Hanthazi
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Christian Melot
- Emergency Department, Erasme University Hospital, and Biostatistics Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Nathalie Labranche
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus La Plaine, Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Kathleen Mc Entee
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
- * E-mail:
| |
Collapse
|
7
|
Saliba Y, Karam R, Smayra V, Aftimos G, Abramowitz J, Birnbaumer L, Farès N. Evidence of a Role for Fibroblast Transient Receptor Potential Canonical 3 Ca2+ Channel in Renal Fibrosis. J Am Soc Nephrol 2015; 26:1855-76. [PMID: 25479966 PMCID: PMC4520158 DOI: 10.1681/asn.2014010065] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023] Open
Abstract
Transient receptor potential canonical (TRPC) Ca(2+)-permeant channels, especially TRPC3, are increasingly implicated in cardiorenal diseases. We studied the possible role of fibroblast TRPC3 in the development of renal fibrosis. In vitro, a macromolecular complex formed by TRPC1/TRPC3/TRPC6 existed in isolated cultured rat renal fibroblasts. However, specific blockade of TRPC3 with the pharmacologic inhibitor pyr3 was sufficient to inhibit both angiotensin II- and 1-oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry in these cells, which was detected by fura-2 Ca(2+) imaging. TRPC3 blockade or Ca(2+) removal inhibited fibroblast proliferation and myofibroblast differentiation by suppressing the phosphorylation of extracellular signal-regulated kinase (ERK1/2). In addition, pyr3 inhibited fibrosis and inflammation-associated markers in a noncytotoxic manner. Furthermore, TRPC3 knockdown by siRNA confirmed these pharmacologic findings. In adult male Wistar rats or wild-type mice subjected to unilateral ureteral obstruction, TRPC3 expression increased in the fibroblasts of obstructed kidneys and was associated with increased Ca(2+) entry, ERK1/2 phosphorylation, and fibroblast proliferation. Both TRPC3 blockade in rats and TRPC3 knockout in mice inhibited ERK1/2 phosphorylation and fibroblast activation as well as myofibroblast differentiation and extracellular matrix remodeling in obstructed kidneys, thus ameliorating tubulointerstitial damage and renal fibrosis. In conclusion, TRPC3 channels are present in renal fibroblasts and control fibroblast proliferation, differentiation, and activation through Ca(2+)-mediated ERK signaling. TRPC3 channels might constitute important therapeutic targets for improving renal remodeling in kidney disease.
Collapse
Affiliation(s)
- Youakim Saliba
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Ralph Karam
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Viviane Smayra
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Georges Aftimos
- Department of Anatomopathology, National Institute of Pathology, Baabda, Lebanon; and
| | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Nassim Farès
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| |
Collapse
|
8
|
Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 2015; 95:645-90. [PMID: 25834234 DOI: 10.1152/physrev.00026.2014] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca(2+) levels or subcellular Ca(2+) signaling events. In addition to directly mediating Ca(2+) entry, TRP channels influence intracellular Ca(2+) dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Joseph E Brayden
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
9
|
Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuroinflammation 2015; 12:21. [PMID: 25644504 PMCID: PMC4322456 DOI: 10.1186/s12974-015-0239-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/07/2015] [Indexed: 02/08/2023] Open
Abstract
An increasing number of studies show that the activation of the innate immune system and inflammatory mechanisms play an important role in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms and its activation occurs in response to pathogens or tissue injury via pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Intracellular pathways, linking immune and inflammatory response to ion channel expression and function, have been recently identified. Among ion channels, the transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes. In this review, we summarize current knowledge of interactions between immune cells and PRRs and ion channels of TRP families with PAMPs and DAMPs to provide new insights into the pathogenesis of inflammatory diseases. TRP channels have been found to interfere with innate immunity via both nuclear factor-kB and procaspase-1 activation to generate the mature caspase-1 that cleaves pro-interleukin-1β cytokine into the mature interleukin-1β. Sensory neurons are also adapted to recognize dangers by virtue of their sensitivity to intense mechanical, thermal and irritant chemical stimuli. As immune cells, they possess many of the same molecular recognition pathways for danger. Thus, they express PRRs including Toll-like receptors 3, 4, 7, and 9, and stimulation by Toll-like receptor ligands leads to induction of inward currents and sensitization in TRPs. In addition, the expression of inflammasomes in neurons and the involvement of TRPs in central nervous system diseases strongly support a role of TRPs in inflammasome-mediated neurodegenerative pathologies. This field is still at its beginning and further studies may be required. Overall, these studies highlight the therapeutic potential of targeting the inflammasomes in proinflammatory, autoinflammatory and metabolic disorders associated with undesirable activation of the inflammasome by using specific TRP antagonists, anti-human TRP monoclonal antibody or different molecules able to abrogate the TRP channel-mediated inflammatory signals.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy.
| | - Claudio Cardinali
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy. .,Department of Molecular Medicine, Sapienza University, Rome, 00185, Italy.
| | - Maria Beatrice Morelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy. .,Department of Molecular Medicine, Sapienza University, Rome, 00185, Italy.
| | - Matteo Santoni
- Department of Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, 60126, Italy.
| | - Massimo Nabissi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy.
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy.
| |
Collapse
|