1
|
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a central metabolite involved in energy and redox homeostasis as well as in DNA repair and protein deacetylation reactions. Pharmacological or genetic inhibition of NAD+-degrading enzymes, external supplementation of NAD+ precursors, and transgenic overexpression of NAD+-generating enzymes have wide positive effects on metabolic health and age-associated diseases. NAD+ pools tend to decline with normal aging, obesity, and hypertension, which are all major risk factors for cardiovascular disease, and NAD+ replenishment extends healthspan, avoids metabolic syndrome, and reduces blood pressure in preclinical models. In addition, experimental elevation of NAD+ improves atherosclerosis, ischemic, diabetic, arrhythmogenic, hypertrophic, or dilated cardiomyopathies, as well as different modalities of heart failure. Here, we critically discuss cardiomyocyte-specific circuitries of NAD+ metabolism, comparatively evaluate distinct NAD+ precursors for their preclinical efficacy, and raise outstanding questions on the optimal design of clinical trials in which NAD+ replenishment or supraphysiological NAD+ elevations are assessed for the prevention or treatment of major cardiac diseases. We surmise that patients with hitherto intractable cardiac diseases such as heart failure with preserved ejection fraction may profit from the administration of NAD+ precursors. The development of such NAD+-centered treatments will rely on technological and conceptual progress on the fine regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Austria (M.A., S.S.).,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France (M.A., G.K.).,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Institut national de la santé et de la recherche médicale (INSERM) U1138, Institut Universitaire de France (M.A., G.K.)
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Austria (M.A., S.S.).,Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia (S.S.)
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France (M.A., G.K.).,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Institut national de la santé et de la recherche médicale (INSERM) U1138, Institut Universitaire de France (M.A., G.K.).,Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris 7015, France (G.K.)
| |
Collapse
|
2
|
Zhou TB, Jiang ZP. Role of poly (ADP-ribose)-polymerase and its signaling pathway with renin-angiotensin aldosterone system in renal diseases. J Recept Signal Transduct Res 2014; 34:143-148. [PMID: 24303937 DOI: 10.3109/10799893.2013.865748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP), a ubiquitous, chromatin-bound enzyme, plays a crucial role in many processes, including DNA repair, cell death, metabolism, and inflammatory responses, by activating DNA repair pathways responsible for cellular survival. Renin-angiotensin-aldosterone system (RAAS) genes encode renin, angiotensinogen, angiotensin-converting enzyme, angiotensin type-1 receptor and aldosterone synthase gene. RAAS is a hormone system which acts on multiple physiologic pathways primarily by regulating blood pressure, electrolyte and fluid homeostasis in mammals, but also by local autocrine and paracrine actions. The current status quo of scientific evidence shows that there might be a signaling pathway between PARP and RAAS. Herein, we review the role of PARP and its signaling pathways with RAAS in renal diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | |
Collapse
|