1
|
Chrysakis N, Magouliotis DE, Spiliopoulos K, Athanasiou T, Briasoulis A, Triposkiadis F, Skoularigis J, Xanthopoulos A. Heart Transplantation. J Clin Med 2024; 13:558. [PMID: 38256691 PMCID: PMC10816008 DOI: 10.3390/jcm13020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Heart transplantation (HTx) remains the last therapeutic resort for patients with advanced heart failure. The present work is a clinically focused review discussing current issues in heart transplantation. Several factors have been associated with the outcome of HTx, such as ABO and HLA compatibility, graft size, ischemic time, age, infections, and the cause of death, as well as imaging and laboratory tests. In 2018, UNOS changed the organ allocation policy for HTx. The aim of this change was to prioritize patients with a more severe clinical condition resulting in a reduction in mortality of people on the waiting list. Advanced heart failure and resistant angina are among the main indications of HTx, whereas active infection, peripheral vascular disease, malignancies, and increased body mass index (BMI) are important contraindications. The main complications of HTx include graft rejection, graft angiopathy, primary graft failure, infection, neoplasms, and retransplantation. Recent advances in the field of HTx include the first two porcine-to-human xenotransplantations, the inclusion of hepatitis C donors, donation after circulatory death, novel monitoring for acute cellular rejection and antibody-mediated rejection, and advances in donor heart preservation and transportation. Lastly, novel immunosuppression therapies such as daratumumab, belatacept, IL 6 directed therapy, and IgG endopeptidase have shown promising results.
Collapse
Affiliation(s)
- Nikolaos Chrysakis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (N.C.); (F.T.)
| | | | - Kyriakos Spiliopoulos
- Department of Surgery, University Hospital of Larissa, 41110 Larissa, Greece (K.S.); (T.A.)
| | - Thanos Athanasiou
- Department of Surgery, University Hospital of Larissa, 41110 Larissa, Greece (K.S.); (T.A.)
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, Faculty of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Filippos Triposkiadis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (N.C.); (F.T.)
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (N.C.); (F.T.)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (N.C.); (F.T.)
| |
Collapse
|
2
|
Díaz-Villamarín X, Fernández-Varón E, Rojas Romero MC, Callejas-Rubio JL, Cabeza-Barrera J, Rodríguez-Nogales A, Gálvez J, Morón R. Azathioprine dose tailoring based on pharmacogenetic information: Insights of clinical implementation. Biomed Pharmacother 2023; 168:115706. [PMID: 37857254 DOI: 10.1016/j.biopha.2023.115706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Azathioprine is commonly used as an immunosuppressive antimetabolite in the treatment of acute lymphoblastic leukemia, autoimmune disorders (such as Crohn's disease and rheumatoid arthritis), and in patients receiving organ transplants. Thiopurine-S-methyltransferase (TPMT) is a cytoplasmic trans-methylase catalyzing the S-methylation of thiopurines. The active metabolites obtained from thiopurines are hydrolyzed into inactive forms by the Nudix hydrolase 15 (NUDT15). The TPMT*2 (defined by rs1800462), *3A (defined by rs1800460 and rs1142345), *3B (defined by rs1800460), *3C (defined by rs1142345), *6 (defined by rs75543815), and NUDT15 rs116855232 genetic variant have been associated, with the highest level of evidence, with the response to azathioprine, and, the approved drug label for azathioprine and main pharmacogenetic dosing guidelines recommend starting with reduced initial doses in TPMT intermediate metabolizer (IM) patients and considering an alternative treatment in TPMT poor metabolizer (PM) patients. This study aims to assess the clinical impact of azathioprine dose tailoring based on TPMT genotyping studying the azathioprine toxicity and efficacy, treatment starts, and dose adjustments during follow-up, comparing TPMT IM/PM and normal metabolizer (NM) patients. It also studied the association of NUDT15 rs116855232 with response to azathioprine in patients receiving a tailored treatment based on TPMT and characterized the TMPT and NUDT15 studied variants in our population. Results show that azathioprine dose reduction in TPMT IM patients (TPMT*1/*2, *1/*3A, or *1/*3C genotypes) is related to lower toxicity events compared to TPMT NM (TPMT *1/*1 genotype), and lower azathioprine dose adjustments during follow-up without showing differences in the efficacy. The results support the hypothesis of existing other genetic variants affecting azathioprine toxicity.
Collapse
Affiliation(s)
| | - Emilio Fernández-Varón
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | | | - José Luis Callejas-Rubio
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Internal Medicine Department, Hospital Universitario San Cecilio, Granada, Spain
| | - José Cabeza-Barrera
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Hospital Pharmacy Unit. Hospital Universitario San Cecilio, Granada, Spain
| | - Alba Rodríguez-Nogales
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Centro de Investigaciones Biomédicas en Red - Enfermedades Hepáticas y Digestivas (CIBER-ehd)
| | - Rocío Morón
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), Granada, Spain; Hospital Pharmacy Unit. Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
3
|
Myocardial Vascular Function Assessed by Dynamic Oxygenation-sensitive Cardiac Magnetic Resonance Imaging Long-term Following Cardiac Transplantation. Transplantation 2021; 105:1347-1355. [PMID: 32804801 DOI: 10.1097/tp.0000000000003419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Coronary vascular function is related to adverse outcomes following cardiac transplantation (CTx) in patients with or without cardiac allograft vasculopathy (CAV). The noninvasive assessment of the myocardial vascular response using oxygenation-sensitive cardiac magnetic resonance (OS-CMR has not been investigated in stable long-term CTx recipients). METHODS CTx patients were prospectively recruited to complete a CMR study with a breathing maneuver of hyperventilation followed by a voluntary apnea. Changes in OS-sensitive signal intensity reflecting the myocardial oxygenation response were monitored and expressed as % change in response to these breathing maneuvers. Myocardial injury was further investigated with T2-weighted imaging, native and postcontrast T1 measurements, extracellular volume measurements, and late gadolinium enhancement. RESULTS Forty-six CTx patients with (n = 23) and without (n = 23) CAV, along with 25 healthy controls (HC), were enrolled. The OS response was significantly attenuated in CTx compared with HC at the 30-second time-point into the breath-hold (2.63% ± 4.16% versus 6.40% ± 5.96%; P = 0.010). Compared with HC, OS response was lower in CTx without CAV (2.62% ± 4.60%; P < 0.05), while this response was further attenuated in patients with severe CAV (grades 2-3, -2.24% ± 3.65%). An inverse correlation was observed between OS-CMR, ventricular volumes, and diffuse fibrosis measured by extracellular volume mapping. CONCLUSIONS In heart transplant patients, myocardial oxygenation is impaired even in the absence of CAV suggesting microvascular dysfunction. These abnormalities can be identified by oxygenation-sensitive CMR using simple breathing maneuvers.
Collapse
|
4
|
Daniel LL, Dickson AL, Chung CP. Precision medicine for rheumatologists: lessons from the pharmacogenomics of azathioprine. Clin Rheumatol 2020; 40:65-73. [PMID: 32617765 DOI: 10.1007/s10067-020-05258-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Precision medicine aims to personalize treatment for both effectiveness and safety. As a critical component of this emerging initiative, pharmacogenomics seeks to guide drug treatment based on genetics. In this review article, we give an overview of pharmacogenomics in the setting of an immunosuppressant frequently prescribed by rheumatologists, azathioprine. Azathioprine has a narrow therapeutic index and a high risk of adverse events. By applying candidate gene analysis and unbiased approaches, researchers have identified multiple variants associated with an increased risk for adverse events associated with azathioprine, particularly bone marrow suppression. Variants in two genes, TPMT and NUDT15, are widely recognized, leading drug regulatory agencies and professional organizations to adopt recommendations for testing before initiation of azathioprine therapy. As more gene-drug interactions are discovered, our field will continue to face the challenge of balancing benefits and costs associated with genetic testing. However, novel approaches in genomics and the integration of clinical and genetic factors into risk scores offer unprecedented opportunities for the application of pharmacogenomics in routine practice. Key Points • Pharmacogenomics can help us understand how individuals' genetics may impact their response to medications. • Azathioprine is a success story for the clinical implementation of pharmacogenomics, particularly the effects of TPMT and NUDT15 variants on myelosuppression. • As our knowledge advances, testing and dosing recommendations will continue to evolve, with our field striving to balance costs and benefits to patients. • As we aim toward the goals of precision medicine, future research may integrate increasingly individualized traits-including clinical and genetic characteristics-to predict the safety and efficacy of particular medications for individual patients.
Collapse
Affiliation(s)
- Laura L Daniel
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center (LLD, ALD, CPC), Nashville, TN, 37232, USA
| | - Alyson L Dickson
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center (LLD, ALD, CPC), Nashville, TN, 37232, USA
| | - Cecilia P Chung
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center (LLD, ALD, CPC), Nashville, TN, 37232, USA. .,Tennessee Valley Healthcare System-Nashville Campus (CPC), Nashville, TN, USA. .,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine (CPC), Nashville, TN, USA.
| |
Collapse
|
5
|
Jarrar YB, Ghishan M. The Nudix Hydrolase 15 (NUDT15) Gene Variants among Jordanian Arab Population. Asian Pac J Cancer Prev 2019; 20:801-808. [PMID: 30909691 PMCID: PMC6825778 DOI: 10.31557/apjcp.2019.20.3.801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Nudix Hydrolase 15 gene (NUDT15) encodes nucleotide triphosphate diphosphatase which metabolizes
the purine analog drugs, such as anticancer thiopurine and anti-gout allopurinol. Genetic variants on Nudix Hydrolase
15 gene (NUDT15) gene effects the drug’s hydrolyses and hence increases the susceptibility to drug-induced toxicity.
The NUDT15 gene has been genotyped in various ethnic groups, however, it has not been genotyped among the
Middle Eastern Arab Jordanian population. Aim: The current study aimed to identify NUDT15 genetic variants among
Jordanian Arab population. Method: The DNA samples were isolated from leukocytes of 85 unrelated Jordanian
Arab volunteers. The coding regions of NUDT15 gene; Exon 1,2 and 3, in addition to some regions of intron 1,2 and
3’UTR, were amplified using polymerase chain reaction (PCR). the PCR products were then subjected to purification
and sequenced using Applied Biosystems Model (ABI3730x1). Results: Six NUDT15 genetic variants were found
among the volunteers.The results were as followed: A novel synonymous variant 36A>G on exon 1 (6%, 95%CI=
3- 9%), the intronic IVS1 +116C>T variant on intron 1 (0.6%, 95%CI= 0-2%), the non-synonymous variant on exon
3; 415C>T (0.6%, 95%CI= 0-2%), A novel non-synonymous variant on exon 3; 404C>A (0.6%, 95%CI= 0-2%) , and
two novel variants on 3’UTR ;502G>A (2%, 95%CI= 0.5-4%) and 588T>C (0.6%, 95%CI= 0-2%). NUDT15 36A>G
wasfound to be the most common allele among Jordanians was. In silico softwares predicted that the novel NUDT15
404C>A was harmful and affected NUDT15 enzyme’sstability and function. Furthermore, the frequency of NUDT15
IVS1 +116C>T , among Jordanians, showed to be significantly lower from what was reported in other ethnicities with
ap value > 0.05 on the other hand, the frequency of 415C>T variant showed to be similar to Europeans in contrast to
Asians and Indians that showed to be significantly lower (p value > 0.05). Conclusions: The frequency of NUDT15
genetic variants is low among the Jordanian volunteers and significantly lower than other ethnic groups. The findings of
this study may increase our understanding of the inter-individual variation in the response to purine analog drugs. Further
clinical studies are needed to investigate the influence of novel NUDT15 404C>A on drug metabolism and response.
Collapse
Affiliation(s)
| | - Maria Ghishan
- College of Pharmacy, AlZaytoonah University of Jordan, Amman, Jordan.
| |
Collapse
|
6
|
Urbančič D, Šmid A, Stocco G, Decorti G, Mlinarič-Raščan I, Karas Kuželički N. Novel motif of variable number of tandem repeats in TPMT promoter region and evolutionary association of variable number of tandem repeats with TPMT*3 alleles. Pharmacogenomics 2018; 19:1311-1322. [PMID: 30345902 DOI: 10.2217/pgs-2018-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/24/2018] [Indexed: 11/21/2022] Open
Abstract
AIM SNPs in the gene for TPMT exemplify one of the most successful translations of pharmacogenomics into clinical practice. This study explains the correlation between common SNPs and variable number of tandem repeats (VNTR) in promoter of the gene. MATERIALS & METHODS We determined VNTR polymorphisms, as well as TPMT*2 and TPMT*3 SNPs and TPMT activity in Slovenian and Italian individuals and lymphoblastoid cell lines. RESULTS We observed a previously unreported VNTR allele, AB7C, in a TPMT*3A heterozygous individual. VNTRs with two (AB2C) and three or more (ABnC, n ≥ 3) B motifs were statistically significant in complete linkage disequilibrium (D' = 1, r2 = 1, p < 0.0001) with the TPMT*3C and TPMT*3A alleles, respectively. CONCLUSION The study provides insights into the stepwise evolution of TPMT*3 alleles from *3C to *3A, with increasing number of B motifs in the VNTR region.
Collapse
Affiliation(s)
- Dunja Urbančič
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Alenka Šmid
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuliana Decorti
- Laboratorio di Diagnostica Avanzata Traslazionale, Institute for Maternal & Child Health - IRCCS 'Burlo Garofolo', 34127 Trieste, Italy
- Department of Medicine, Surgery & Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Irena Mlinarič-Raščan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nataša Karas Kuželički
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Abstract
Immunosuppression management after lung transplantation continues to evolve, with an increasing number of agents available for use in various combinations allowing for more choice and individualization of immunosuppressive therapy. Therapeutic developments have led to improved outcomes including lower acute rejection rates and improved survival. However, a one size fits all approach for any immunosuppressive strategy may not be best suited to the individual patient and ultimately patient specific factors must be considered when designing the immunosuppressive regimen. Recipient factors including age, race, co-morbidities, immunologic risk, genetic polymorphisms, concomitant and previous pharmacotherapy, and overall immunosuppression burden should be considered. There are several significant drug-drug interactions with select immunosuppressive agents utilized in lung transplant pharmacotherapy that must be considered when choosing and devising a dosing strategy for an individual immunosuppressive agent. Herein, considerations for immunosuppression management in the individual patient will be reviewed.
Collapse
Affiliation(s)
- Jennifer K McDermott
- Richard DeVos Heart and Lung Transplant Program, Spectrum Health, Grand Rapids, Michigan.,Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Reda E Girgis
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
| |
Collapse
|
8
|
Zur RM, Roy LM, Ito S, Beyene J, Carew C, Ungar WJ. Thiopurine S-methyltransferase testing for averting drug toxicity: a meta-analysis of diagnostic test accuracy. THE PHARMACOGENOMICS JOURNAL 2016; 16:305-11. [PMID: 27217052 PMCID: PMC4957983 DOI: 10.1038/tpj.2016.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/15/2016] [Indexed: 01/12/2023]
Abstract
Thiopurine S-methyltransferase (TPMT) deficiency increases the risk of serious adverse events in persons receiving thiopurines. The objective was to synthesize reported sensitivity and specificity of TPMT phenotyping and genotyping using a latent class hierarchical summary receiver operating characteristic meta-analysis. In 27 studies, pooled sensitivity and specificity of phenotyping for deficient individuals was 75.9% (95% credible interval (CrI), 58.3-87.0%) and 98.9% (96.3-100%), respectively. For genotype tests evaluating TPMT*2 and TPMT*3, sensitivity and specificity was 90.4% (79.1-99.4%) and 100.0% (99.9-100%), respectively. For individuals with deficient or intermediate activity, phenotype sensitivity and specificity was 91.3% (86.4-95.5%) and 92.6% (86.5-96.6%), respectively. For genotype tests evaluating TPMT*2 and TPMT*3, sensitivity and specificity was 88.9% (81.6-97.5%) and 99.2% (98.4-99.9%), respectively. Genotyping has higher sensitivity as long as TPMT*2 and TPMT*3 are tested. Both approaches display high specificity. Latent class meta-analysis is a useful method for synthesizing diagnostic test performance data for clinical practice guidelines.The Pharmacogenomics Journal advance online publication, 24 May 2016; doi:10.1038/tpj.2016.37.
Collapse
Affiliation(s)
- RM Zur
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Peter Gilgan Centre for Research and Learning, Toronto, Canada
| | - LM Roy
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Peter Gilgan Centre for Research and Learning, Toronto, Canada
| | - S Ito
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, Canada
- Departments of Pharmacology & Pharmacy, Faculty of Medicine, Department of Paediatrics, University of Toronto, Toronto, Canada
| | - J Beyene
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Canada
| | - C Carew
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Canada
| | - WJ Ungar
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Peter Gilgan Centre for Research and Learning, Toronto, Canada
- Institute for Health Policy, Management & Evaluation, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Roy LM, Zur RM, Uleryk E, Carew C, Ito S, Ungar WJ. Thiopurine S-methyltransferase testing for averting drug toxicity in patients receiving thiopurines: a systematic review. Pharmacogenomics 2016; 17:633-56. [PMID: 27020704 PMCID: PMC4931919 DOI: 10.2217/pgs.16.12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM Thiopurine S-methyltransferase (TPMT) testing is used in patients receiving thiopurines to identify enzyme deficiencies and risk for adverse drug reactions. It is uncertain whether genotyping is superior to phenotyping. The objectives were to conduct a systematic review of TPMT-test performance studies. MATERIALS & METHODS Electronic and grey literature sources were searched for studies reporting test performance compared with a reference standard. Sixty-six eligible studies were appraised for quality. RESULTS Thirty phenotype-genotype and six phenotype-phenotype comparisons were of high quality. The calculated sensitivity and specificity for genotyping to identify a homozygous mutation ranged from 0.0-100.0% and from 97.8-100.0%, respectively. CONCLUSION Clinical decision-makers require high-quality evidence of clinical validity and clinical utility of TPMT genotyping to ensure appropriate use in patients.
Collapse
Affiliation(s)
- Lilla M Roy
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Richard M Zur
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Elizabeth Uleryk
- Library Services, The Hospital for Sick Children, Toronto, Canada
| | - Chris Carew
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Shinya Ito
- Division of Clinical Pharmacology & Toxicology, The Hospital for Sick Children, Toronto, Canada
- Departments of Pharmacology & Pharmacy, Faculty of Medicine Department of Paediatrics, University of Toronto, Canada
| | - Wendy J Ungar
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, Canada
- Institute for Health Policy, Management & Evaluation, University of Toronto, Canada
| |
Collapse
|
10
|
Abstract
Consensus practice guidelines and the implementation of clinical therapeutic advances are usually based on the results of large, randomized clinical trials (RCTs). However, RCTs generally inform us on an average treatment effect for a presumably homogeneous population, but therapeutic interventions rarely benefit the entire population targeted. Indeed, multiple RCTs have demonstrated that interindividual variability exists both in drug response and in the development of adverse effects. The field of pharmacogenomics promises to deliver the right drug to the right patient. Substantial progress has been made in this field, with advances in technology, statistical and computational methods, and the use of cell and animal model systems. However, clinical implementation of pharmacogenetic principles has been difficult because RCTs demonstrating benefit are lacking. For patients, the potential benefits of performing such trials include the individualization of therapy to maximize efficacy and minimize adverse effects. These trials would also enable investigators to reduce sample size and hence contain costs for trial sponsors. Multiple ethical, legal, and practical issues need to be considered for the conduct of genotype-based RCTs. Whether pre-emptive genotyping embedded in electronic health records will preclude the need for performing genotype-based RCTs remains to be seen.
Collapse
Affiliation(s)
- Naveen L Pereira
- Division of Cardiovascular Diseases, Department of Internal Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel J Sargent
- Department of Biomedical Statistics and Informatics, Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Michael E Farkouh
- Peter Munk Cardiac Centre and Heart and Stroke Richard Lewer Centre, University of Toronto, 585 University Avenue, Toronto, ON M5G 2N2, Canada
| | - Charanjit S Rihal
- Division of Cardiovascular Diseases, Department of Internal Medicine, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Pereira NL, Stewart AK. Clinical Implementation of Cardiovascular Pharmacogenomics. Mayo Clin Proc 2015; 90:701-4. [PMID: 26046404 DOI: 10.1016/j.mayocp.2015.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Naveen L Pereira
- Division of Cardiovascular Diseases, Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN.
| | - A Keith Stewart
- Center for Individualized Medicine, Division of Hematology/Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Affiliation(s)
- Sara L Van Driest
- From Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Steven A Webber
- From Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
13
|
Hronová K, Šíma M, Světlík S, Matoušková O, Slanař O. Pharmacogenetics and immunosuppressive drugs. Expert Rev Clin Pharmacol 2014; 7:821-35. [PMID: 25301406 DOI: 10.1586/17512433.2014.966811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several candidate genes have been proposed as potential biomarkers for altered pharmacodynamics or pharmacokinetics of immunosuppressive drugs. However, there is usually only limited clinical evidence substantiating the implementation of biomarkers into clinical practice. Testing for thiopurine-S-methyltransferase polymorphisms has been put into routine clinical use quite widely, while the other pharmacogenetic tests are much less frequently used. Relatively good evidence appeared for tacrolimus-related biomarkers; thus, their utilization may be envisaged in the near future. Although the biomarkers related to mycophenolate, sirolimus or other drugs in the therapeutic class may be promising, further research is necessary to provide more robust evidence. The present review focuses on immunosuppressive drugs, excluding biological treatment.
Collapse
Affiliation(s)
- Karolína Hronová
- Department of Pharmacology, First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Albertov 4, CZ-128 00 Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|