1
|
Zhang L, Li F, Zhang L, Zhou Y, Liu Y, Liu J, Cheng Y, Shu J, Zhao H, Wei Y. KIF18B drives the malignant progression of gliomas by activating the Notch pathway. Cell Signal 2025; 134:111888. [PMID: 40403904 DOI: 10.1016/j.cellsig.2025.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/06/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Kinesin family member 18B (KIF18B) is expressed differently in multiple malignancies and contributes to tumorigenesis. However, the relevance of KIF18B in glioma remains undetermined. This work evaluated the level and clinical significance of KIF18B in glioma. The upregulation of KIF18B was frequently detected in glioma specimens, which was related to clinicopathological features and therapeutic outcomes. A decrease in KIF18B expression in glioma cells was found to suppress malignant proliferation and metastasis, while simultaneously enhancing the cells' sensitivity to chemotherapeutic agents. Bioinformatics analysis demonstrated a significant correlation between KIF18B and the Notch signaling pathway in glioma cells. Further experimental validation confirmed that silencing KIF18B effectively inhibited the activation of the Notch signaling pathway. Reactivation of the Notch signaling pathway remarkably reversed the cancer-suppressing effects of KIF18B knockdown. Moreover, the ability of KIF18B-silenced glioma cells to form xenografts in nude mice was markedly impaired, accompanied by the downregulation of the Notch signaling pathway. This work indicates that KIF18 is crucial for maintaining glioma progression and proposes its potential as a promising therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an 710127, China; Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an 710016, China; Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Fei Li
- Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an 710127, China; Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Lingxue Zhang
- Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an 710127, China; Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Yuyan Zhou
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Yusheng Liu
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Jing Liu
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Yilun Cheng
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Jianjun Shu
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Haikang Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China.
| | - Yao Wei
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China.
| |
Collapse
|
2
|
Saadh MJ, Ghnim ZS, Mahdi MS, Mandaliya V, Ballal S, Bareja L, Chaudhary K, Sharma R, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. The emerging role of kinesin superfamily proteins in Wnt/β-catenin signaling: Implications for cancer. Pathol Res Pract 2025; 269:155904. [PMID: 40073645 DOI: 10.1016/j.prp.2025.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Cellular processes such as proliferation, differentiation, and tissue homeostasis are significantly influenced by the Wnt/β-catenin signaling pathway. Dysregulation of this pathway has been implicated in the development of various types of cancer. This study focuses on the emerging role of kinesin superfamily proteins (KIFs) in modulating cancer signaling. KIFs, a group of motor proteins, have attracted attention for their dual roles in intracellular transport: facilitating the cellular entry of Wnt ligands and contributing to the assembly of the β-catenin destruction complex. The study explores the interactions between KIFs and the Wnt/β-catenin pathway, identifying specific KIFs that interact with key components of the signaling cascade and examining their roles in cancer progression. Furthermore, it evaluates therapeutic strategies targeting KIFs to suppress aberrant Wnt activity in cancer and investigates how KIF-mediated transport spatially and temporally regulates Wnt signaling. The insights provided could guide future research into the role of KIFs in cancer biology and their involvement in oncogenic signaling pathways.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science Marwadi University, Rajkot, Gujarat 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Rsk Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
3
|
Su X, Huang L, Ma W, Wang R, Zeng X, Wei G, Mai S, Yang M, Tang S. Study on the mechanism of KIF18B affecting the malignant progression of glioblastoma cells. Front Genet 2025; 16:1540342. [PMID: 40110038 PMCID: PMC11919893 DOI: 10.3389/fgene.2025.1540342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Background Member of the driver protein family 18B (KIF18B) is a potential prognostic marker and is highly expressed in a variety of cancers. However, its function in glioblastoma (GBM) remains unclear. Methods The expression data of KIF18B were obtained by accessing TCGA, CGGA and GEPIA databases, and verified by Western blot assay and immunohistochemistry. Glioma RNA sequencing data and clinical information were downloaded from TCGA and CGGA databases, and Kaplan-plotter survival analysis and Multivariable COX regression analysis were performed to plot ROC survival curves at 1, 3 and 5 years cBioPortal and MethSurv were used to carefully examine the prognostic value of KIF18B methylation. CBioPortal database and UALCAN database were used to obtain KIF18B co-expressed genes for GO and KEGG enrichment analysis, and gene set enrichment analysis (GSEA) software was used to explore the signaling pathway of KIF18B regulation of GBM. Finally, the correlation between KIF18B and GBM infiltration was studied by using TIMER database and TCGA dataset. Results KIF18B was highly expressed in various cancers including GBM, and was positively correlated with glioma grade and negatively correlated with prognosis. Multivariable COX regression analysis and ROC curve showed that KIF18B was one of the independent risk factors for glioma prognosis. KIF18B methylation was negatively correlated with KIF18B expression, and the overall survival rate of patients with KIF18B hypomethylation was lower than that of patients with KIF18B hypermethylation. A total of 124 co-expressed genes were selected from the database. KEGG pathway analysis showed that KIF18B was mainly involved in the malignant progression of glioma through P53 and other signaling pathways. GSEA analysis showed that the high expression group of KIF18B was mainly enriched in E2F, G2M and other signaling pathways. The results of immunoassay showed that the expression of KIF18B was correlated with immune infiltration of tumor microenvironment. Conclusion KIF18B is a key factor affecting the prognosis of GBM patients, and its targeting may provide a new therapeutic method for GBM patients.
Collapse
Affiliation(s)
- Xiangyue Su
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Liji Huang
- Departments of Laboratory Diagnosis, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Wei Ma
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Rong Wang
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Xiangjian Zeng
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Gangliang Wei
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Suli Mai
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Min Yang
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| | - Shifu Tang
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liuzhou, China
| |
Collapse
|
4
|
Hashemi M, Rezaei M, Rezaeiaghdam H, Jamali B, Koohpar ZK, Tanha M, Bizhanpour A, Asadi S, Jafari AM, Khosroshahi EM, Eslami M, Salimimoghadam S, Nabavi N, Rashidi M, Fattah E, Taheriazam A, Entezari M. Highlighting function of Wnt signalling in urological cancers: Molecular interactions, therapeutic strategies, and (nano)strategies. Transl Oncol 2024; 50:102145. [PMID: 39357465 PMCID: PMC11474201 DOI: 10.1016/j.tranon.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a complex, multistep process characterized by abnormal cell growth and metastasis as well as the capacity of the tumor cells in therapy resistance development. The urological system is particularly susceptible to a group of malignancies known as urological cancers, where an accumulation of genetic alterations drives carcinogenesis. In various human cancers, Wnt singalling is dysregulated; following nuclear transfer of β-catenin, it promotes tumor progression and affects genes expression. Elevated levels of Wnt have been documented in urological cancers, where its overexpression enhances growth and metastasis. Additionally, increased Wnt singalling contributes to chemoresistance in urological cancers, leading to reduced sensitivity to chemotherapy agents like cisplatin, doxorubicin, and paclitaxel. Wnt upregulation can change radiotherapy response of urological cancers. The regulation of Wnt involves various molecular pathways, including Akt, miRNAs, lncRNAs, and circRNAs, all of which play roles in carcinogenesis. Targeting and silencing Wnt or its associated pathways can mitigate tumorigenesis in urological cancers. Anti-cancer compounds such as curcumin and thymoquinone have shown efficacy in suppressing tumorigenesis through the downregulation of Wnt singalling. Notably, nanoparticles have proven effective in treating urological cancers, with several studies in prostate cancer (PCa) using nanoparticles to downregulate Wnt and suppress tumor growth. Future research should focus on developing small molecules that inhibit Wnt singalling to further suppress tumorigenesis and advance the treatment of urological cancers. Moreover, Wnt can be used as reliable biomarker for the diagnosis and prognosis of urological cancers.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Hadi Rezaeiaghdam
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Zeinab Khazaei Koohpar
- Department Of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahsa Tanha
- Department Of Biological Sciences, University Of Alabama, Tuscaloosa, Al, United States
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Chen S, Yu B, DU GT, Huang TY, Zhang N, Fu N. KIF18B: an important role in signaling pathways and a potential resistant target in tumor development. Discov Oncol 2024; 15:430. [PMID: 39259333 PMCID: PMC11390998 DOI: 10.1007/s12672-024-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
KIF18B is a key member of the kinesin-8 family, involved in regulating various physiological processes such as microtubule length, spindle assembly, and chromosome alignment. This article briefly introduces the structure and physiological functions of KIF18B, examines its role in malignant tumors, and the associated carcinogenic signaling pathways such as PI3K/AKT, Wnt/β-catenin, and mTOR pathways. Research indicates that the upregulation of KIF18B enhances tumor malignancy and resistance to radiotherapy and chemotherapy. KIF18B could become a new target for anticancer drugs, offering significant potential for the treatment of malignant tumors and reducing chemotherapy resistance.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Bo Yu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Guo Tu DU
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Tian Yu Huang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| | - Ni Fu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| |
Collapse
|
6
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
7
|
Yang X, Du Y, Luo L, Xu X, Xiong S, Yang X, Guo L, Liang T. Deciphering the Enigmatic Influence: Non-Coding RNAs Orchestrating Wnt/β-Catenin Signaling Pathway in Tumor Progression. Int J Mol Sci 2023; 24:13909. [PMID: 37762212 PMCID: PMC10530696 DOI: 10.3390/ijms241813909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated expression of specific non-coding RNAs (ncRNAs) has been strongly linked to tumorigenesis, cancer progression, and therapeutic resistance. These ncRNAs can act as either oncogenes or tumor suppressors, thereby serving as valuable diagnostic and prognostic markers. Numerous studies have implicated the participation of ncRNAs in the regulation of diverse signaling pathways, including the pivotal Wnt/β-catenin signaling pathway that is widely acknowledged for its pivotal role in embryogenesis, cellular proliferation, and tumor biology control. Recent emerging evidence has shed light on the capacity of ncRNAs to interact with key components of the Wnt/β-catenin signaling pathway, thereby modulating the expression of Wnt target genes in cancer cells. Notably, the activity of this pathway can reciprocally influence the expression levels of ncRNAs. However, comprehensive analysis investigating the specific ncRNAs associated with the Wnt/β-catenin signaling pathway and their intricate interactions in cancer remains elusive. Based on these noteworthy findings, this review aims to unravel the intricate associations between ncRNAs and the Wnt/β-catenin signaling pathway during cancer initiation, progression, and their potential implications for therapeutic interventions. Additionally, we provide a comprehensive overview of the characteristics of ncRNAs and the Wnt/β-catenin signaling pathway, accompanied by a thorough discussion of their functional roles in tumor biology. Targeting ncRNAs and molecules associated with the Wnt/β-catenin signaling pathway may emerge as a promising and effective therapeutic strategy in future cancer treatments.
Collapse
Affiliation(s)
- Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Shizheng Xiong
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| |
Collapse
|