1
|
Petrovic M, Simic T, Djukic T, Radic T, Savic-Radojevic A, Zekovic M, Durutovic O, Janicic A, Milojevic B, Kajmakovic B, Zivkovic M, Bojanic N, Bumbasirevic U, Coric V. The Polymorphisms in GSTO Genes ( GSTO1 rs4925, GSTO2 rs156697, and GSTO2 rs2297235) Affect the Risk for Testicular Germ Cell Tumor Development: A Pilot Study. Life (Basel) 2023; 13:1269. [PMID: 37374052 DOI: 10.3390/life13061269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Members of the omega class of glutathione transferases (GSTs), GSTO1, and GSTO2, catalyze a range of reduction reactions as a part of the antioxidant defense system. Polymorphisms of genes encoding antioxidant proteins and the resultant altered redox profile have already been associated with the increased risk for testicular germ cell cancer (GCT) development. The aim of this pilot study was to assess the individual, combined, haplotype, and cumulative effect of GSTO1rs4925, GSTO2rs156697, and GSTO2rs2297235 polymorphisms with the risk for testicular GCT development, in 88 patients and 96 matched controls, through logistic regression models. We found that carriers of the GSTO1*C/A*C/C genotype exhibited an increased risk for testicular GCT development. Significant association with increased risk of testicular GCT was observed in carriers of GSTO2rs2297235*A/G*G/G genotype, and in carriers of combined GSTO2rs156697*A/G*G/G and GSTO2rs2297235*A/G*G/G genotypes. Haplotype H7 (GSTO1rs4925*C/GSTO2rs2297235*G/GSTO2rs156697*G) exhibited higher risk of testicular GCT, however, without significant association (p > 0.05). Finally, 51% of testicular GCT patients were the carriers of all three risk-associated genotypes, with 2.5-fold increased cumulative risk. In conclusion, the results of this pilot study suggest that GSTO polymorphisms might affect the protective antioxidant activity of GSTO isoenzymes, therefore predisposing susceptible individuals toward higher risk for testicular GCT development.
Collapse
Affiliation(s)
- Milos Petrovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Tatjana Djukic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Radic
- Institute of Mental Health, 11000 Belgrade, Serbia
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Zekovic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Otas Durutovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Janicic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bogomir Milojevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Boris Kajmakovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Zivkovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Nebojsa Bojanic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Uros Bumbasirevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Coric
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Skowron MA, Oing C, Bremmer F, Ströbel P, Murray MJ, Coleman N, Amatruda JF, Honecker F, Bokemeyer C, Albers P, Nettersheim D. The developmental origin of cancers defines basic principles of cisplatin resistance. Cancer Lett 2021; 519:199-210. [PMID: 34320371 DOI: 10.1016/j.canlet.2021.07.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 02/09/2023]
Abstract
Cisplatin-based chemotherapy has been used for more than four decades as a standard therapeutic option in several tumor entities. However, being a multifaceted and heterogeneous phenomenon, inherent or acquired resistance to cisplatin remains a major obstacle during the treatment of several solid malignancies and inevitably results in disease progression. Hence, we felt there was an urgent need to evaluate common mechanisms between multifarious cancer entities to identify patient-specific therapeutic strategies. We found joint molecular and (epi)genetic resistance mechanisms and specific cisplatin-induced mutational signatures that depended on the developmental origin (endo-, meso-, ectoderm) of the tumor tissue. Based on the findings of thirteen tumor entities, we identified three resistance groups, where Group 1 (endodermal origin) prominently indicates NRF2-pathway activation, Group 2 (mesodermal origin, primordial germ cells) shares elevated DNA repair mechanisms and decreased apoptosis induction, and Group 3 (ectodermal and paraxial mesodermal origin) commonly presents deregulated apoptosis induction and alternating pathways as the main cisplatin-induced resistance mechanisms. This review further proposes potential and novel therapeutic strategies to improve the outcome of cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Christoph Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany; Mildred Scheel Cancer Career Center HaTriCs4, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany.
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str.4, 37075 Gottingen, Germany.
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str.4, 37075 Gottingen, Germany.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Department of Pediatric Hematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK.
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK.
| | - James F Amatruda
- Departments of Pediatrics and Medicine, Keck School of Medicine, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, University of Southern California, 1975 Zonal Ave., Los Angeles, CA 90033, USA.
| | - Friedemann Honecker
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany; Tumor and Breast Center ZeTuP St. Gallen, Rorschacher Strasse 150, 9000 St. Gallen, Switzerland.
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany.
| | - Peter Albers
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Hoff AM, Kraggerud SM, Alagaratnam S, Berg KCG, Johannessen B, Høland M, Nilsen G, Lingjærde OC, Andrews PW, Lothe RA, Skotheim RI. Frequent copy number gains of SLC2A3 and ETV1 in testicular embryonal carcinomas. Endocr Relat Cancer 2020; 27:457-468. [PMID: 32580154 PMCID: PMC7424350 DOI: 10.1530/erc-20-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/10/2020] [Indexed: 01/03/2023]
Abstract
Testicular germ cell tumours (TGCTs) appear as different histological subtypes or mixtures of these. They show similar, multiple DNA copy number changes, where gain of 12p is pathognomonic. However, few high-resolution analyses have been performed and focal DNA copy number changes with corresponding candidate target genes remain poorly described for individual subtypes. We present the first high-resolution DNA copy number aberration (CNA) analysis on the subtype embryonal carcinomas (ECs), including 13 primary ECs and 5 EC cell lines. We identified recurrent gains and losses and allele-specific CNAs. Within these regions, we nominate 30 genes that may be of interest to the EC subtype. By in silico analysis of data from 150 TGCTs from The Cancer Genome Atlas (TCGA), we further investigated CNAs, RNA expression, somatic mutations and fusion transcripts of these genes. Among primary ECs, ploidy ranged between 2.3 and 5.0, and the most common aberrations were DNA copy number gains at chromosome (arm) 7, 8, 12p, and 17, losses at 4, 10, 11, and 18, replicating known TGCT genome characteristics. Gain of whole or parts of 12p was found in all samples, including a highly amplified 100 kbp segment at 12p13.31, containing SLC2A3. Gain at 7p21, encompassing ETV1, was the second most frequent aberration. In conclusion, we present novel CNAs and the genes located within these regions, where the copy number gain of SLC2A3 and ETV1 are of interest, and which copy number levels also correlate with expression in TGCTs.
Collapse
Affiliation(s)
- Andreas M Hoff
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sigrid M Kraggerud
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sharmini Alagaratnam
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kaja C G Berg
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Maren Høland
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gro Nilsen
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Ole C Lingjærde
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Peter W Andrews
- The Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Correspondence should be addressed to R A Lothe or R I Skotheim: or
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Correspondence should be addressed to R A Lothe or R I Skotheim: or
| |
Collapse
|
4
|
Milardi D, Grande G, Vincenzoni F, Pierconti F, Pontecorvi A. Proteomics for the Identification of Biomarkers in Testicular Cancer-Review. Front Endocrinol (Lausanne) 2019; 10:462. [PMID: 31354629 PMCID: PMC6639829 DOI: 10.3389/fendo.2019.00462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/25/2019] [Indexed: 01/04/2023] Open
Abstract
A large number of biomarkers have been proposed for the diagnosis of testicular cancer, representing putative molecular targets for anticancer treatments. However, no conclusive data have been provided. Proteomics represents a research field recently developed. It evaluates the large-scale analysis of the full protein components of a single cell, of a specific tissue, or of biological fluids. In the last decades, proteomics has been applied in clinical fields, thanks to modern technology and new bioinformatic tools, to identify novel molecular markers of diseases. The aim of this review is to argue the findings of recent studies in the discoveries of putative prognostic and diagnostic markers of testis cancer by proteomic techniques. We present here a panel of proteins identified by proteomics which might be used after validation for early detection and the prognostic evaluation of testicular tumors. In addition, the molecular mechanisms revealed by these proteomic studies might also guide the development of novel treatments in future.
Collapse
Affiliation(s)
- Domenico Milardi
- International Scientific Institute “Paul VI”, Rome, Italy
- Division of Endocrinology, Fondazione Policlinico'A. Gemelli' IRCCS, Rome, Italy
| | - Giuseppe Grande
- International Scientific Institute “Paul VI”, Rome, Italy
- Division of Endocrinology, Fondazione Policlinico'A. Gemelli' IRCCS, Rome, Italy
- *Correspondence: Giuseppe Grande
| | - Federica Vincenzoni
- School of Medicine, Biochemistry and Clinical Biochemistry Institute, Catholic University of Rome, Rome, Italy
- Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico'A. Gemelli' IRCCS, Rome, Italy
| | - Francesco Pierconti
- Division of Anatomic Pathology and Histology, School of Medicine, Catholic University of Rome, Rome, Italy
| | - Alfredo Pontecorvi
- International Scientific Institute “Paul VI”, Rome, Italy
- Division of Endocrinology, Fondazione Policlinico'A. Gemelli' IRCCS, Rome, Italy
| |
Collapse
|
5
|
Singh S. Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemother Pharmacol 2014; 75:1-15. [PMID: 25143300 DOI: 10.1007/s00280-014-2566-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/04/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Glutathione S-transferases (GSTs) family of enzymes is best known for their cytoprotective role and their involvement in the development of anticancer drug resistance. Recently, emergence of non-detoxifying properties of GSTs has provided them with significant biological importance. Addressing the complex interactions of GSTs with regulatory kinases will help in understanding its precise role in tumor pathophysiology and in designing GST-centered anticancer strategies. METHODS We reviewed all published literature addressing the detoxification and regulatory roles of GSTs in the altered biology of cancer and evaluating novel agents targeting GSTs for cancer therapy. RESULTS The role of GSTs, especially glutathione S-transferase P1 isoform in tumoral drug resistance, has been the cause of intense debate. GSTs have been demonstrated to interact with different protein partners and modulate signaling pathways that control cell proliferation, differentiation and apoptosis. These specific functions of GSTs could lead to the development of new therapeutic approaches and to the identification of some interesting candidates for preclinical and clinical development. This review focuses on the crucial role played by GSTs in the development of resistance to anticancer agents and the major findings regarding the different modes of action of GSTs to regulate cell signaling.
Collapse
Affiliation(s)
- Simendra Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Gautam Buddha Nagar, Greater Noida, UP, India,
| |
Collapse
|
6
|
Erčulj N, Kovač V, Hmeljak J, Dolžan V. The influence of platinum pathway polymorphisms on the outcome in patients with malignant mesothelioma. Ann Oncol 2012; 23:961-7. [DOI: 10.1093/annonc/mdr324] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Tew KD, Townsend DM. Regulatory functions of glutathione S-transferase P1-1 unrelated to detoxification. Drug Metab Rev 2011; 43:179-93. [PMID: 21351850 DOI: 10.3109/03602532.2011.552912] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glutathione S-transferase P1-1 (GSTP) is one member of the family of GSTs and is ubiquitously expressed in human tissues. The literature is replete with reports of high levels of GSTP linked either with cancer incidence or drug resistance, and yet no entirely cogent explanation for these correlations exists. The catalytic detoxification properties of the GST isozyme family have been a primary research focus for the last four decades. However, it has become apparent that they have undergone structural and functional convergence where evolutionary selective pressures have favored the emergence of noncatalytic properties of GSTP that has imbued this isozyme with expanded biological importance. For example, GSTP has now been linked with two cell-signaling functions that are critical to survival. Through protein:protein interactions, GSTP can sequester c-jun N-terminal kinase (JNK) and act as a negative regulator of this stress kinase. Pharmacologically, this activity has been linked with the activity of GSTP inhibitors in stimulating myeloproliferation. In addition, GSTP is linked with the forward S-glutathionylation reaction, a post-translational modification that impacts the function/activity of a number of proteins. Catalytic reversal of S-glutathionylation is well characterized, but the role of GSTP in catalyzing the forward reaction contributes to the "glutathionylation cycle." Moreover, GSTP is itself susceptible to S-glutathionylation, providing an autoregulatory loop for the cycle. Because oxidative stress regulates both S-glutathionylation and JNK-signaling pathways, such links may help to explain the aberrant patterns of GSTP expression in the cancer phenotype. As such, there is an ongoing preclinical and clinical platform of drug discovery and development around GSTP.
Collapse
Affiliation(s)
- Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-5050, USA.
| | | |
Collapse
|
8
|
Grek CL, Townsend DM, Tew KD. The impact of redox and thiol status on the bone marrow: Pharmacological intervention strategies. Pharmacol Ther 2011; 129:172-84. [PMID: 20951732 PMCID: PMC3026067 DOI: 10.1016/j.pharmthera.2010.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
Abstract
Imbalances in cancer cell redox homeostasis provide a platform for new opportunities in the development of anticancer drugs. The control of severe dose-limiting toxicities associated with redox regulation, including myelosuppression and immunosuppression, remains a challenge. Recent evidence implicates a critical role for redox regulation and thiol balance in pathways that control myeloproliferation, hematopoietic progenitor cell mobilization, and immune response. Hematopoietic stem cell (HSC) self-renewal and differentiation are dependent upon levels of intracellular reactive oxygen species (ROS) and niche microenvironments. Redox status and the equilibrium of free thiol:disulfide couples are important in modulating immune response and lymphocyte activation, proliferation and differentiation. This subject matter is the focus of the present review. The potential of redox modulating chemotherapeutics as myeloproliferative and immunomodulatory agents is also covered.
Collapse
Affiliation(s)
- Christina L. Grek
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425
| | - Danyelle M. Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Kenneth D. Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|