1
|
Lizunkova P, Engdahl E, Borbély G, Gennings C, Lindh C, Bornehag CG, Rüegg J. A Mixture of Endocrine Disrupting Chemicals Associated with Lower Birth Weight in Children Induces Adipogenesis and DNA Methylation Changes in Human Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms23042320. [PMID: 35216435 PMCID: PMC8879125 DOI: 10.3390/ijms23042320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Endocrine Disrupting Chemicals (EDCs) are man-made compounds that alter functions of the endocrine system. Environmental mixtures of EDCs might have adverse effects on human health, even though their individual concentrations are below regulatory levels of concerns. However, studies identifying and experimentally testing adverse effects of real-life mixtures are scarce. In this study, we aimed at evaluating an epidemiologically identified EDC mixture in an experimental setting to delineate its cellular and epigenetic effects. The mixture was established using data from the Swedish Environmental Longitudinal Mother and child Asthma and allergy (SELMA) study where it was associated with lower birth weight, an early marker for prenatal metabolic programming. This mixture was then tested for its ability to change metabolic programming of human mesenchymal stem cells. In these cells, we assessed if the mixture induced adipogenesis and genome-wide DNA methylation changes. The mixture increased lipid droplet accumulation already at concentrations corresponding to levels measured in the pregnant women of the SELMA study. Furthermore, we identified differentially methylated regions in genes important for adipogenesis and thermogenesis. This study shows that a mixture reflecting human real-life exposure can induce molecular and cellular changes during development that could underlie adverse outcomes.
Collapse
Affiliation(s)
- Polina Lizunkova
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
| | - Elin Engdahl
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
| | - Gábor Borbély
- The Swedish Toxicology Sciences Research Center (Swetox), 15257 Södertälje, Sweden;
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.G.); (C.-G.B.)
| | - Christian Lindh
- Occupational and Environmental Medicine, Lund University, 22363 Lund, Sweden;
| | - Carl-Gustaf Bornehag
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.G.); (C.-G.B.)
- Department of Health Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
- Correspondence: ; Tel.: +46-73-7121592
| |
Collapse
|
2
|
Mirzaeicheshmeh E, Zerrweck C, Centeno-Cruz F, Baca-Peynado P, Martinez-Hernandez A, García-Ortiz H, Contreras-Cubas C, Salas-Martínez MG, Saldaña-Alvarez Y, Mendoza-Caamal EC, Barajas-Olmos F, Orozco L. Alterations of DNA methylation during adipogenesis differentiation of mesenchymal stem cells isolated from adipose tissue of patients with obesity is associated with type 2 diabetes. Adipocyte 2021; 10:493-504. [PMID: 34699309 PMCID: PMC8555535 DOI: 10.1080/21623945.2021.1978157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
Adipogenesis regulation is crucial for mature adipocyte function. In obesity, a major driver of type 2 diabetes (T2D), this process is disrupted and remains poorly characterized. Here we identified altered DNA methylation profiles in diabetic obese patients, during three adipocytes differentiation stages. We isolated mesenchymal cells from visceral adipose tissue of obese patients with and without T2D to analyse DNA methylation profiles at 0, 3, and 18 days of ex vivo differentiation and documented their impact on gene expression. Methylation and gene expression were analysed with EPIC and Clarion S arrays, respectively. Patients with T2D had epigenetic alterations in all the analysed stages, and these were mainly observed in genes important in adipogenesis, insulin resistance, cell death programming, and immune effector processes. Importantly, at 3 days, we found six-fold more methylated CpG alterations than in the other stages. This is the first study to document epigenetic markers that persist through all three adipogenesis stages and their impact on gene expression, which could be a cellular metabolic memory involved in T2D. Our data provided evidence that, throughout the adipogenesis process, alterations occur in methylation that might impact mature adipocyte function, cause tissue malfunction, and potentially, lead to the development of T2D.
Collapse
Affiliation(s)
- Elaheh Mirzaeicheshmeh
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Carlos Zerrweck
- Clínica de Obesidad del Hospital General Tláhuac, SSA, Mexico City, Mexico
- Facultad De Medicina, Alta Especialidad En Cirugía Bariatrica, Unam, Mexico City, Mexico
| | - Federico Centeno-Cruz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Paulina Baca-Peynado
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Angélica Martinez-Hernandez
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | | | - Yolanda Saldaña-Alvarez
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | | | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Disease Laboratory, Instituto Nacional De Medicina Genómica, Ss, Mexico City, Mexico
| |
Collapse
|
3
|
Shim U, Kim HN, Lee H, Oh JY, Sung YA, Kim HL. Pathway Analysis Based on a Genome-Wide Association Study of Polycystic Ovary Syndrome. PLoS One 2015; 10:e0136609. [PMID: 26308735 PMCID: PMC4550465 DOI: 10.1371/journal.pone.0136609] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, and it is affected by both environmental and genetic factors. Although the genetic component of PCOS is evident, studies aiming to identify susceptibility genes have shown controversial results. This study conducted a pathway-based analysis using a dataset obtained through a genome-wide association study (GWAS) to elucidate the biological pathways that contribute to PCOS susceptibility and the associated genes. Methods We used GWAS data on 636,797 autosomal single nucleotide polymorphisms (SNPs) from 1,221 individuals (432 PCOS patients and 789 controls) for analysis. A pathway analysis was conducted using meta-analysis gene-set enrichment of variant associations (MAGENTA). Top-ranking pathways or gene sets associated with PCOS were identified, and significant genes within the pathways were analyzed. Results The pathway analysis of the GWAS dataset identified significant pathways related to oocyte meiosis and the regulation of insulin secretion by acetylcholine and free fatty acids (all nominal gene-set enrichment analysis (GSEA) P-values < 0.05). In addition, INS, GNAQ, STXBP1, PLCB3, PLCB2, SMC3 and PLCZ1 were significant genes observed within the biological pathways (all gene P-values < 0.05). Conclusions By applying MAGENTA pathway analysis to PCOS GWAS data, we identified significant pathways and candidate genes involved in PCOS. Our findings may provide new leads for understanding the mechanisms underlying the development of PCOS.
Collapse
Affiliation(s)
- Unjin Shim
- Department of Internal Medicine, Seoul Seonam Hospital, Ewha Womans University Medical Center, Seoul, Korea
| | - Han-Na Kim
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyejin Lee
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jee-Young Oh
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Yeon-Ah Sung
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
- * E-mail: (YAS); (HLK)
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
- * E-mail: (YAS); (HLK)
| |
Collapse
|
4
|
Dela Cruz A, Mattocks M, Sugamori KS, Grynpas MD, Mitchell J. Reduced trabecular bone mass and strength in mice overexpressing Gα11 protein in cells of the osteoblast lineage. Bone 2014; 59:211-22. [PMID: 24308950 DOI: 10.1016/j.bone.2013.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 01/10/2023]
Abstract
G protein-coupled receptors (GPCRs) require G proteins for intracellular signaling to regulate a variety of growth and maintenance processes, including osteogenesis and bone turnover. Bone maintenance events may be altered by changes in the activity or level of G proteins, which then modify signaling in bone cells such as osteoblasts. We have previously reported increased levels of Gα11 protein and signaling to phospholipase C/protein kinase C pathways in response to dexamethasone in osteoblastic UMR 106-01 cells. Here we generated pOBCol3.6-GNA11 transgenic mice that overexpress Gα11 protein in cells of the osteoblast lineage (G11-Tg mice). G11-Tg mice exhibit an osteopenic phenotype characterized by significant reductions in trabecular bone mineral density, thickness, number and strength. The numbers of osteoblasts and osteocytes were unchanged in G11-Tg bone, but early markers of osteoblast differentiation, Alp and Bsp, were increased while the late stage differentiation marker Ocn was not changed suggesting reduced osteoblast maturation in G11-Tg trabecular bone which was accompanied by a decreased bone formation rate. Furthermore, in vitro cultures of G11-Tg primary osteoblasts show delayed osteoblast differentiation and mineralization. Histological analyses also revealed increased osteoclast parameters, accompanied by elevated mRNA expression of Trap and Ctsk. mRNA levels of Rankl and M-csf were elevated in vitro in bone marrow stromal cells undergoing osteogenesis and in trabecular bone in vivo. Together, these findings demonstrate that increasing Gα11 protein expression in osteoblasts can alter gene expression and result in a dual mechanism of trabecular bone loss.
Collapse
Affiliation(s)
- Ariana Dela Cruz
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael Mattocks
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kim S Sugamori
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Marc D Grynpas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
5
|
Klenke S, Siffert W, Frey UH. Cloning and Characterization of theGNA11Promoter and its Regulation by Early Growth Response 1. Basic Clin Pharmacol Toxicol 2013; 113:316-24. [DOI: 10.1111/bcpt.12100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Stefanie Klenke
- Institut für Pharmakogenetik; Universität Duisburg-Essen and Universitätsklinikum Essen; Essen; Germany
| | - Winfried Siffert
- Institut für Pharmakogenetik; Universität Duisburg-Essen and Universitätsklinikum Essen; Essen; Germany
| | | |
Collapse
|
6
|
Siffert W. Institutional Profile: Institute of Pharmacogenetics at the University Hospital Essen. Pharmacogenomics 2013; 14:241-3. [DOI: 10.2217/pgs.12.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Established in 2005, the Institute of Pharmacogenetics at the University Hospital Essen (Essen, Germany), headed by Winfried Siffert, is devoted to the discovery and validation of genetic variants that may impact upon drug responses especially in the field of cardiovascular disorders and cancer. Moreover, the institute provides pharmacogenetic testing for those drugs for which pharmacogenetic testing is recommended in order to prevent adverse drug reactions.
Collapse
Affiliation(s)
- Winfried Siffert
- Institut für Pharmakogenetik, Universität Duisburg–Essen, D-45122 Essen, Germany
| |
Collapse
|
7
|
Hadsell DL, Wei J, Olea W, Hadsell LA, Renwick A, Thomson PC, Shariflou M, Williamson P. In silico QTL mapping of maternal nurturing ability with the mouse diversity panel. Physiol Genomics 2012; 44:787-98. [PMID: 22759921 DOI: 10.1152/physiolgenomics.00159.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Significant variation exists for maternal nurturing ability in inbred mice. Although classical mapping approaches have identified quantitative trait loci (QTL) that may account for this variation, the underlying genes are unknown. In this study, lactation performance data among the mouse diversity panel were used to map genomic regions associated with this variation. Females from each of 32 inbred strains (n = 8-19 dams/strain) were studied during the first 8 days of lactation by allowing them to raise weight- and size-normalized cross-foster litters (10 pups/litter). Average daily weight gain (ADG) of litters served as the primary indicator of milk production. The number of pups successfully reared to 8 days (PNUM8) also served as a related indicator of maternal performance. Initial haplotype association analysis using a Bonferroni-corrected, genome-wide threshold revealed 10 and 15 associations encompassing 11 and 13 genes for ADG and PNUM8, respectively. The most significant of these associated haplotype blocks were found on MMU 8, 11, and 19 and contained the genes Nr3c2, Egfr, Sec61g, and Gnaq. Lastly, two haplotype blocks on MMU9 were detected in association with PNUM8. These overlapped with the previously described maternal performance QTL, Neogq1. These results suggest that the application of in silico QTL mapping is a useful tool in discovering the presence of novel candidate genes involved in determining lactation capacity in mice.
Collapse
Affiliation(s)
- D L Hadsell
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030-2600, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Klenke S, Siffert W. SNPs in genes encoding G proteins in pharmacogenetics. Pharmacogenomics 2011; 12:633-54. [DOI: 10.2217/pgs.10.203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heterotrimeric guanine-binding proteins (G proteins) transmit signals from the cell surface to intracellular signal cascades and are involved in various physiological and pathophysiological processes. Polymorphisms in the genes GNB3 (encoding the Gβ3 subunit), GNAS (encoding the Gαs subunit) and GNAQ (encoding the Gαq subunit) have been the primary focus of investigation. Polymorphisms in these genes could be associated with different complex phenotypes underlining that alterations in G-protein signaling can cause multiple disorders. G proteins present a point of convergence or ‘bottleneck’ between various receptors and effectors, thus making them a sensible tool for pharmacogenetic studies. The pharmacogenetic studies performed to date mostly demonstrate an association between G-protein polymorphisms and response to therapy or occurrence of adverse drug effects. Therefore, polymorphisms in genes encoding G-protein subunits may help to individualize drug treatment in various diseases with regard to both efficacy and safety.
Collapse
Affiliation(s)
| | - Winfried Siffert
- Institut für Pharmakogenetik, Universität Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|