1
|
Aurinsalo L, Lapatto‐Reiniluoto O, Kurkela M, Neuvonen M, Kiiski JI, Niemi M, Tornio A, Backman JT. A Phenotyping Tool for Seven Cytochrome P450 Enzymes and Two Transporters: Application to Examine the Effects of Clopidogrel and Gemfibrozil. Clin Pharmacol Ther 2025; 117:1732-1742. [PMID: 39982209 PMCID: PMC12087695 DOI: 10.1002/cpt.3610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Clinical cocktails for cytochrome P450 (CYP) phenotyping lack a marker for CYP2C8. We aimed to combine the CYP2C8 index drug repaglinide with the Geneva cocktail (caffeine/CYP1A2, bupropion/CYP2B6, flurbiprofen/CYP2C9, omeprazole/CYP2C19, dextromethorphan/CYP2D6, and midazolam/CYP3A4). We also included endogenous organic anion transporting polypeptide (OATP) 1B1 and 1B3 biomarkers glycochenodeoxycholate 3-O-glucuronide and glycochenodeoxycholate 3-sulfate, and investigated the CYP2C8 inhibition selectivity of clopidogrel and gemfibrozil with the full cocktail. In a five-phase randomized cross-over study, the following drugs were administered to 16 healthy volunteers: (i) repaglinide, (ii) the Geneva cocktail, (iii) repaglinide with the Geneva cocktail (full cocktail), (iv) clopidogrel followed by the full cocktail, and (v) gemfibrozil followed by the full cocktail. The Geneva cocktail increased repaglinide AUC0-23h 1.22-fold (90% confidence interval 1.04-1.44, P = 0.033). The full cocktail accurately captured known inhibitory effects of clopidogrel on CYP2B6, CYP2C8, and CYP2C19 and that of gemfibrozil on CYP2C8. Gemfibrozil decreased the paraxanthine/caffeine AUC0-12h ratio by 23% (14-31%, P < 0.01) and increased caffeine AUC0-12h 1.20-fold (1.03-1.40, P = 0.036). Gemfibrozil increased the metabolite-to-index drug AUC0-23h ratios of flurbiprofen, omeprazole, dextromethorphan, and midazolam 1.59-fold (1.32-1.92), 1.47-fold (1.34-1.61), 1.79-fold (1.23-2.59), and 2.1-fold (1.9-2.4), respectively, without affecting the index drug AUCs (P < 0.01). Gemfibrozil increased the AUC0-4h of glycochenodeoxycholate 3-O-glucuronide 1.33-fold (1.07-1.65, P = 0.027). In conclusion, the combination of repaglinide, the Geneva cocktail and endogenous biomarkers for OATP1B1 and OATP1B3 yields a nine-in-one phenotyping tool. Apart from strong CYP2C8 inhibition, gemfibrozil weakly inhibits CYP1A2 and OATP1B1 and appears to impair the elimination of the metabolites of several CYP index drugs.
Collapse
Affiliation(s)
- Laura Aurinsalo
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Outi Lapatto‐Reiniluoto
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
- HUS PharmacyHelsinki University HospitalHelsinkiFinland
| | - Mika Kurkela
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mikko Neuvonen
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Johanna I. Kiiski
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Mikko Niemi
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| | - Aleksi Tornio
- Integrative Physiology and Pharmacology, Institute of BiomedicineUniversity of TurkuTurkuFinland
- Unit of Clinical PharmacologyTurku University HospitalTurkuFinland
| | - Janne T. Backman
- Department of Clinical PharmacologyUniversity of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Clinical Pharmacology, HUS Diagnostic CenterHelsinki University HospitalHelsinkiFinland
| |
Collapse
|
2
|
Morris R, Bu K, Han W, Wood S, Hernandez Velez PM, Ward J, Crescitelli A, Martin M, Cheng F. The Association Between Statin Drugs and Rhabdomyolysis: An Analysis of FDA Adverse Event Reporting System (FAERS) Data and Transcriptomic Profiles. Genes (Basel) 2025; 16:248. [PMID: 40149400 PMCID: PMC11942242 DOI: 10.3390/genes16030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Rhabdomyolysis, a dangerous breakdown of skeletal muscle, has been reported as an adverse event in those prescribed a statin therapy for the treatment of hypercholesterolemia. Statin drugs are some of the most prescribed treatments for elevated cholesterol levels. The purpose of this comparative study was to determine the association between the statin drugs used and the risk of rhabdomyolysis using the FDA Adverse Event Reporting System (FAERS) and transcriptomic data. METHODS A disproportionality analysis was performed to compare the risk of rhabdomyolysis between the reference statin drug (simvastatin) and the treatment group, with patient age assessed as a possible confounder. In addition, association rule mining was utilized to both identify other adverse events that frequently presented with rhabdomyolysis and identify possible drug-drug interactions (DDIs). Finally, public transcriptomic data were explored to identify the possible genetic underpinnings highlighting these differences in rhabdomyolysis risk across statins. RESULTS Rhabdomyolysis is a commonly reported adverse event for patients treated with statins, particularly those prescribed simvastatin. Simvastatin was associated with a more than 2-fold increased likelihood of rhabdomyolysis compared to other statins. Men were twice as likely to report rhabdomyolysis than women regardless of statin treatment, with the highest risk observed for pravastatin (ROR = 2.30, p < 0.001) and atorvastatin (ROR = 2.03, p < 0.0001). Several possible DDIs were identified, including furosemide/Lasix, allopurinol clopidogrel/Plavix, and pantoprazole, which may elevate rhabdomyolysis risk through impaired muscle function and delayed statin metabolism. Finally, nine myopathic genes were identified as possible regulators of statin-induced rhabdomyolysis, including DYSF, DES, PLEC, CAPN3, SCN4A, TNNT1, SDHA, MYH7, and PYGM in primary human muscle cells. CONCLUSIONS Simvastatin was associated with the highest risk of rhabdomyolysis. The risk of rhabdomyolysis was more pronounced in men than women. Several possible DDIs were identified including furosemide/Lasix, allopurinol clopidogrel/Plavix, and pantoprazole.
Collapse
Affiliation(s)
- Robert Morris
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Kun Bu
- Department of Mathematics & Statistics, College of Art and Science, University of South Florida, Tampa, FL 33620, USA; (K.B.); (W.H.)
| | - Weiru Han
- Department of Mathematics & Statistics, College of Art and Science, University of South Florida, Tampa, FL 33620, USA; (K.B.); (W.H.)
| | - Savanah Wood
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Paola M. Hernandez Velez
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Jacob Ward
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Ariana Crescitelli
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Madison Martin
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| | - Feng Cheng
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33613, USA; (R.M.); (S.W.); (P.M.H.V.); (J.W.); (A.C.); (M.M.)
| |
Collapse
|
3
|
Feng B, Liang G, Zetterberg C, Li S, Huang H, Williams J, Gao H, Morikawa Y, Kumar S. Utility of Chimeric Mice with Humanized Livers for Predicting Hepatic Organic Anion-Transporting Polypeptide 1B-Mediated Clinical Drug-Drug Interactions. Drug Metab Dispos 2024; 52:1073-1082. [PMID: 39103225 DOI: 10.1124/dmd.124.001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
The influence of transporters on the pharmacokinetics of drugs is being increasingly recognized, and drug-drug interactions (DDIs) via modulation of transporters could lead to clinical adverse events. Organic anion-transporting polypeptide 1B (OATP1B) is a liver-specific uptake transporter in humans that can transport a broad range of substrates, including statins. It is a challenge to predict OATP1B-mediated DDIs using preclinical animal models because of species differences in substrate specificity and abundance levels of transporters. PXB-mice are chimeric mice with humanized livers that are highly repopulated with human hepatocytes and have been widely used for drug metabolism and pharmacokinetics studies in drug discovery. In the present study, we measured the exposure increases [blood AUC (area under the blood/plasma concentration-time curve) and Cmax] of 10 OATP1B substrates in PXB-mice upon coadministration with rifampin, a potent OATP1B specific inhibitor. These data in PXB-mice were then compared with the observed DDIs between OATP1B substrates and single-dose rifampin in humans. Our findings suggest that the DDIs between OATP1B substrates and rifampin in PXB-mouse are comparable with the observed DDIs in the clinic. Since most OATP1B substrates are metabolized by cytochromes P450 (CYPs) and/or are substrates of P-glycoprotein (P-gp), we further validated the utility of PXB-mice to predict complex DDIs involving inhibition of OATP1B, CYPs, and P-gp using cyclosporin A (CsA) and gemfibrozil as perpetrators. Overall, the data support that the chimeric mice with humanized livers could be a useful tool for the prediction of hepatic OATP1B-mediated DDIs in humans. SIGNIFICANCE STATEMENT: The ability of PXB-mouse with humanized liver to predict organic anion-transporting polypeptide 1B (OATP1B)-mediated drug-drug interactions (DDIs) in humans was evaluated. The blood exposure increases of 10 OATP1B substrates with rifampin, an OATP1B inhibitor, in PXB-mice have a good correlation with those observed in humans. More importantly, PXB-mice can predict complex DDIs, including inhibition of OATP1B, cytochromes P450 (CYPs), and P-glycoprotein (P-gp) in humans. PXB-mice are a promising useful tool to assess OATP1B-mediated clinical DDIs.
Collapse
Affiliation(s)
- Bo Feng
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Guiqing Liang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Craig Zetterberg
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Shaolan Li
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Hui Huang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - John Williams
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Hong Gao
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Yoshio Morikawa
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| | - Sanjeev Kumar
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., G.L., C.Z., S.L., H.H., J.W., H.G., S.K.) and PhoenixBio USA Corporation, New York, New York (Y.M.)
| |
Collapse
|
4
|
Alqasrawi MN, Al-Mahayri ZN, Alblooshi H, Alsafar H, Ali BR. Utilizing Pharmacogenomic Data for a Safer Use of Statins among the Emirati Population. Curr Vasc Pharmacol 2024; 22:218-229. [PMID: 38284696 DOI: 10.2174/0115701611283841231227064343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Statins are the most prescribed lipid-lowering drugs worldwide. The associated adverse events, especially muscle symptoms, have been frequently reported despite their perceived safety. Three pharmacogenes, the solute carrier organic anion transporter family member 1B1 (SLCO1B1), ATP-binding cassette subfamily G member 2 (ABCG2), and cytochrome P450 2C9 (CYP2C9) are suggested as safety biomarkers for statins. The Clinical Pharmacogenomic Implementation Consortium (CPIC) issued clinical guidelines for statin use based on these three genes. OBJECTIVES The present study aimed to examine variants in these pharmacogenes to predict the safety of statin use among the Emirati population. METHODS Analyzing 242 whole exome sequencing data at the three genes enabled the determination of the frequencies of the single nucleotide polymorphisms (SNPs), annotating the haplotypes and the predicted functions of their proteins. RESULTS In our cohort, 29.8% and 5.4% had SLCO1B1 decreased and poor function, respectively. The high frequency warns of the possibility of significant side effects of some statins and the importance of pharmacogenomic testing. We found a low frequency (6%) of the ABCG2:rs2231142 variant, which indicates the low probability of Emirati patients being recommended against higher rosuvastatin doses compared with other populations with higher frequencies of this variant. In contrast, we found high frequencies of the functionally impaired CYP2C9 alleles, which makes fluvastatin a less favorable choice. CONCLUSION Among the sparse studies available, the present one demonstrates all SLCO1B1 and CYP2C9 function-impairing alleles among Emiratis. We highlighted how population-specific pharmacogenomic data can predict safer choices of statins, especially in understudied populations.
Collapse
Affiliation(s)
- Mais N Alqasrawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zeina N Al-Mahayri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hiba Alblooshi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Habiba Alsafar
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Powell JT, Kayesh R, Ballesteros-Perez A, Alam K, Niyonshuti P, Soderblom EJ, Ding K, Xu C, Yue W. Assessing Trans-Inhibition of OATP1B1 and OATP1B3 by Calcineurin and/or PPIase Inhibitors and Global Identification of OATP1B1/3-Associated Proteins. Pharmaceutics 2023; 16:63. [PMID: 38258074 PMCID: PMC10818623 DOI: 10.3390/pharmaceutics16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are key determinants of drug-drug interactions (DDIs). Various drugs including the calcineurin inhibitor (CNI) cyclosporine A (CsA) exert preincubation-induced trans-inhibitory effects upon OATP1B1 and/or OATP1B3 (abbreviated as OATP1B1/3) by unknown mechanism(s). OATP1B1/3 are phosphoproteins; calcineurin, which dephosphorylates and regulates numerous phosphoproteins, has not previously been investigated in the context of preincubation-induced trans-inhibition of OATP1B1/3. Herein, we compare the trans-inhibitory effects exerted on OATP1B1 and OATP1B3 by CsA, the non-analogous CNI tacrolimus, and the non-CNI CsA analogue SCY-635 in transporter-overexpressing human embryonic kidney (HEK) 293 stable cell lines. Preincubation (10-60 min) with tacrolimus (1-10 µM) rapidly and significantly reduces OATP1B1- and OATP1B3-mediated transport up to 0.18 ± 0.03- and 0.20 ± 0.02-fold compared to the control, respectively. Both CsA and SCY-635 can trans-inhibit OATP1B1, with the inhibitory effects progressively increasing over a 60 min preincubation time. At each equivalent preincubation time, CsA has greater trans-inhibitory effects toward OATP1B1 than SCY-635. Preincubation with SCY-635 for 60 min yielded IC50 of 2.2 ± 1.4 µM against OATP1B1, which is ~18 fold greater than that of CsA (0.12 ± 0.04 µM). Furthermore, a proteomics-based screening for protein interactors was used to examine possible proteins and processes contributing to OATP1B1/3 regulation and preincubation-induced inhibition by CNIs and other drugs. A total of 861 and 357 proteins were identified as specifically associated with OATP1B1 and OATP1B3, respectively, including various protein kinases, ubiquitin-related enzymes, the tacrolimus (FK506)-binding proteins FKBP5 and FKBP8, and several known regulatory targets of calcineurin. The current study reports several novel findings that expand our understanding of impaired OATP1B1/3 function; these include preincubation-induced trans-inhibition of OATP1B1/3 by the CNI tacrolimus, greater preincubation-induced inhibition by CsA compared to its non-CNI analogue SCY-635, and association of OATP1B1/3 with various proteins relevant to established and candidate OATP1B1/3 regulatory processes.
Collapse
Affiliation(s)
- John T. Powell
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Alexandra Ballesteros-Perez
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Pascaline Niyonshuti
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kai Ding
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Chao Xu
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| |
Collapse
|
6
|
Banach M, Norata GD. Rhabdomyolysis or Severe Acute Hepatitis Associated with the Use of Red Yeast Rice Extracts: an Update from the Adverse Event Reporting Systems. Curr Atheroscler Rep 2023; 25:879-888. [PMID: 37831308 PMCID: PMC10618339 DOI: 10.1007/s11883-023-01157-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE OF REVIEW Elevated plasma levels of low-density lipoprotein cholesterol (LDL-C) are a major risk factor for atherosclerotic cardiovascular disease (ASCVD), and lowering LDL-C reduces the risk of cardiovascular adverse events. Among natural approaches known for their lipid-lowering properties, red yeast rice (RYR) has a cholesterol-lowering effect due to the presence of bioactive components (monacolins) that act by inhibiting the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. In August 2018, the European Food Safety Authority (EFSA) concluded in its assessment of the use of RYR (further amended in June 2022) that monacolins from RYR raise significant safety concerns when used as a food supplement at a dose of 10 mg/day. In particular, individual cases of serious adverse effects of monacolins from RYR have been reported at intakes as low as 3 mg/day. The EFSA Panel pointed out several uncertainties regarding the available data. RECENT FINDINGS We conducted an in-depth and updated analysis of the serious adverse events, with a focus on rhabdomyolysis and acute hepatitis, associated with the consumption of RYR. An analysis of the Food and Drug Administration reporting systems revealed a very small number of cases of rhabdomyolysis or severe acute hepatitis associated with RYR use. In addition, only a few case reports of these serious adverse events associated with RYR use have been published. Based on data from adverse event reporting systems and available case reports, the occurrence of rhabdomyolysis or severe acute hepatitis that could be associated with the use of RYR appears to be extremely rare compared to the occurrence with statins, which is rare to common.
Collapse
Affiliation(s)
- Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Kayesh R, Tambe V, Xu C, Yue W. Differential Preincubation Effects of Nicardipine on OATP1B1- and OATP1B3-Mediated Transport in the Presence and Absence of Protein: Implications in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. Pharmaceutics 2023; 15:1020. [PMID: 36986880 PMCID: PMC10052025 DOI: 10.3390/pharmaceutics15031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Impaired transport activity of hepatic OATP1B1 and OATP1B3 due to drug-drug interactions (DDIs) often leads to increased systemic exposure to substrate drugs (e.g., lipid-lowering statins). Since dyslipidemia and hypertension frequently coexist, statins are often concurrently used with antihypertensives, including calcium channel blockers (CCBs). OATP1B1/1B3-related DDIs in humans have been reported for several CCBs. To date, the OATP1B1/1B3-mediated DDI potential of CCB nicardipine has not been assessed. The current study was designed to assess the OATP1B1- and OATP1B3-mediated DDI potential of nicardipine using the R-value model, following the US-FDA guidance. IC50 values of nicardipine against OATP1B1 and OATP1B3 were determined in transporter-overexpressing human embryonic kidney 293 cells using [3H]-estradiol 17β-D-glucuronide and [3H]-cholecystokinin-8 as substrates, respectively, with or without nicardipine-preincubation in protein-free Hanks' Balanced Salt Solution (HBSS) or in fetal bovine serum (FBS)-containing culture medium. Preincubation with nicardipine for 30 min in protein-free HBSS buffer produced lower IC50 and higher R-values for both OATP1B1 and OATP1B3 compared to in FBS-containing medium, yielding IC50 values of 0.98 and 1.63 µM and R-values of 1.4 and 1.3 for OATP1B1 and OATP1B3, respectively. The R-values were higher than the US-FDA cut-off value of 1.1, supporting that nicardipine has the potential to cause OATP1B1/3-mediated DDIs. Current studies provide insight into the consideration of optimal preincubation conditions when assessing the OATP1B1/3-mediated DDIs in vitro.
Collapse
Affiliation(s)
- Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Vishakha Tambe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
8
|
Nakatsugawa E, Naito T, Imoto Y, Shibata K, Ono T, Kawakami J. Characterization of endogenous markers of hepatic function in patients receiving itraconazole treatment for prophylaxis of deep mycosis. J Infect Chemother 2023; 29:244-249. [PMID: 36410672 DOI: 10.1016/j.jiac.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Long-term use of itraconazole (ITZ) is associated with a risk of inducing hepatotoxicity. This study aimed to evaluate the associations of plasma concentrations of ITZ and its hydroxylated metabolite (OH-ITZ) with endogenous markers of hepatic function. METHODS Thirty six patients treated with oral ITZ solution for prophylaxis of deep mycosis were enrolled. Plasma concentrations of ITZ and OH-ITZ were determined on the 14th day or later after administration of ITZ. Their associations with endogenous marker levels of hepatic function including plasma coproporphyrin (CP)-I and OATP1B1 genotypes were assessed. RESULTS The serum level of total bilirubin (T-Bil) was moderately correlated with the plasma concentration of total ITZ (tITZ) and OH-ITZ (tOH-ITZ). T-Bil elevation above 0.3 mg/dL was observed in 19% of patients, although statistically significant difference was not identified. The plasma concentration of tITZ had no correlation with other endogenous markers levels including AST, ALT, albumin, and plasma CP-I. The serum AST and plasma CP-I levels were correlated with the plasma concentration of free OH-ITZ (fOH-ITZ). T-Bil and plasma CP-I, a marker of OATP1B1 activity, were not correlated with each other, and neither was associated with the OATP1B1 genotypes. CONCLUSIONS Plasma ITZ and OH-ITZ had a positive association with T-Bil. The patients with a higher fOH-ITZ level had lower OATP1B1 activity on the basis of plasma CP-I level. ITZ and OH-ITZ have the potential to slightly increase endogenous marker levels of hepatic function, although most likely by different mechanisms.
Collapse
Affiliation(s)
- Emi Nakatsugawa
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Naito
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Pharmacy, Shinshu University Hospital, Matsumoto, Nagano, Japan.
| | - Yumi Imoto
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaito Shibata
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Pharmacy, Shinshu University Hospital, Matsumoto, Nagano, Japan
| | - Takaaki Ono
- Division of Hematology, Internal Medicine 3, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junichi Kawakami
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
9
|
Ahire D, Kruger L, Sharma S, Mettu VS, Basit A, Prasad B. Quantitative Proteomics in Translational Absorption, Distribution, Metabolism, and Excretion and Precision Medicine. Pharmacol Rev 2022; 74:769-796. [PMID: 35738681 PMCID: PMC9553121 DOI: 10.1124/pharmrev.121.000449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A reliable translation of in vitro and preclinical data on drug absorption, distribution, metabolism, and excretion (ADME) to humans is important for safe and effective drug development. Precision medicine that is expected to provide the right clinical dose for the right patient at the right time requires a comprehensive understanding of population factors affecting drug disposition and response. Characterization of drug-metabolizing enzymes and transporters for the protein abundance and their interindividual as well as differential tissue and cross-species variabilities is important for translational ADME and precision medicine. This review first provides a brief overview of quantitative proteomics principles including liquid chromatography-tandem mass spectrometry tools, data acquisition approaches, proteomics sample preparation techniques, and quality controls for ensuring rigor and reproducibility in protein quantification data. Then, potential applications of quantitative proteomics in the translation of in vitro and preclinical data as well as prediction of interindividual variability are discussed in detail with tabulated examples. The applications of quantitative proteomics data in physiologically based pharmacokinetic modeling for ADME prediction are discussed with representative case examples. Finally, various considerations for reliable quantitative proteomics analysis for translational ADME and precision medicine and the future directions are discussed. SIGNIFICANCE STATEMENT: Quantitative proteomics analysis of drug-metabolizing enzymes and transporters in humans and preclinical species provides key physiological information that assists in the translation of in vitro and preclinical data to humans. This review provides the principles and applications of quantitative proteomics in characterizing in vitro, ex vivo, and preclinical models for translational research and interindividual variability prediction. Integration of these data into physiologically based pharmacokinetic modeling is proving to be critical for safe, effective, timely, and cost-effective drug development.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Laken Kruger
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Sheena Sharma
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
10
|
Wilma K, Noora S, Riikka M, Liina J, Kati-Sisko V, Mikko N, Mikko N, Seppo A, Heidi K. Functional in vitro characterization of SLCO1B1 variants and simulation of the clinical pharmacokinetic impact of impaired OATP1B1 function. Eur J Pharm Sci 2022; 176:106246. [PMID: 35752377 DOI: 10.1016/j.ejps.2022.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
Organic Anion Transporting Polypeptide 1B1 is important to the hepatic elimination and distribution of many drugs. If OATP1B1 function is decreased, it can increase plasma exposure of e.g. several statins leading to increased risk of muscle toxicity. First, we examined the impact of three naturally occurring rare variants and the frequent SLCO1B1 c.388A>G variant on in vitro transport activity with cellular uptake assay using two substrates: 2', 7'-dichlorofluorescein (DCF) and rosuvastatin. Secondly, LC-MS/MS based quantitative targeted absolute proteomics measured the OATP1B1 protein abundance in crude membrane fractions of HEK293 cells over-expressing these SNVs. Additionally, we simulated the effect of impaired OATP1B1 function on rosuvastatin pharmacokinetics to estimate the need for genotype-guided dosing. R57Q impaired DCF and rosuvastatin transport significantly yet did not change protein expression considerably, while N130D and N151S did not alter activity but increased protein expression. R253Q did not change protein expression but reduced DCF uptake and increased rosuvastatin Km. Based on pharmacokinetics simulations, doses of 30 mg (with 50% OATP1B1 function) and 20 mg (with 0% OATP1B1 function) result in plasma exposure similar to 40 mg dose (with 100% OATP1B1 function). Therefore dose reductions might be considered to avoid increased plasma exposure caused by function-impairing OATP1B1 genetic variants, such as R57Q.
Collapse
Affiliation(s)
- Kiander Wilma
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014, Helsinki, Finland
| | - Sjöstedt Noora
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014, Helsinki, Finland
| | - Manninen Riikka
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014, Helsinki, Finland
| | - Jaakkonen Liina
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014, Helsinki, Finland
| | | | - Neuvonen Mikko
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niemi Mikko
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Auriola Seppo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kidron Heidi
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00014, Helsinki, Finland.
| |
Collapse
|
11
|
Physiologically Based Pharmacokinetic (PBPK) Modeling of Clopidogrel and Its Four Relevant Metabolites for CYP2B6, CYP2C8, CYP2C19, and CYP3A4 Drug–Drug–Gene Interaction Predictions. Pharmaceutics 2022; 14:pharmaceutics14050915. [PMID: 35631502 PMCID: PMC9145019 DOI: 10.3390/pharmaceutics14050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
The antiplatelet agent clopidogrel is listed by the FDA as a strong clinical index inhibitor of cytochrome P450 (CYP) 2C8 and weak clinical inhibitor of CYP2B6. Moreover, clopidogrel is a substrate of—among others—CYP2C19 and CYP3A4. This work presents the development of a whole-body physiologically based pharmacokinetic (PBPK) model of clopidogrel including the relevant metabolites, clopidogrel carboxylic acid, clopidogrel acyl glucuronide, 2-oxo-clopidogrel, and the active thiol metabolite, with subsequent application for drug–gene interaction (DGI) and drug–drug interaction (DDI) predictions. Model building was performed in PK-Sim® using 66 plasma concentration-time profiles of clopidogrel and its metabolites. The comprehensive parent-metabolite model covers biotransformation via carboxylesterase (CES) 1, CES2, CYP2C19, CYP3A4, and uridine 5′-diphospho-glucuronosyltransferase 2B7. Moreover, CYP2C19 was incorporated for normal, intermediate, and poor metabolizer phenotypes. Good predictive performance of the model was demonstrated for the DGI involving CYP2C19, with 17/19 predicted DGI AUClast and 19/19 predicted DGI Cmax ratios within 2-fold of their observed values. Furthermore, DDIs involving bupropion, omeprazole, montelukast, pioglitazone, repaglinide, and rifampicin showed 13/13 predicted DDI AUClast and 13/13 predicted DDI Cmax ratios within 2-fold of their observed ratios. After publication, the model will be made publicly accessible in the Open Systems Pharmacology repository.
Collapse
|
12
|
Bottoni P, Pontoglio A, Scarà S, Pieroni L, Urbani A, Scatena R. Mitochondrial Respiratory Complexes as Targets of Drugs: The PPAR Agonist Example. Cells 2022; 11:cells11071169. [PMID: 35406733 PMCID: PMC8997591 DOI: 10.3390/cells11071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial bioenergetics are progressively acquiring significant pathophysiological roles. Specifically, mitochondria in general and Electron Respiratory Chain in particular are gaining importance as unintentional targets of different drugs. The so-called PPAR ligands are a class of drugs which not only link and activate Peroxisome Proliferator-Activated Receptors but also show a myriad of extrareceptorial activities as well. In particular, they were shown to inhibit NADH coenzyme Q reductase. However, the molecular picture of this intriguing bioenergetic derangement has not yet been well defined. Using high resolution respirometry, both in permeabilized and intact HepG2 cells, and a proteomic approach, the mitochondrial bioenergetic damage induced by various PPAR ligands was evaluated. Results show a derangement of mitochondrial oxidative metabolism more complex than one related to a simple perturbation of complex I. In fact, a partial inhibition of mitochondrial NADH oxidation seems to be associated not only with hampered ATP synthesis but also with a significant reduction in respiratory control ratio, spare respiratory capacity, coupling efficiency and, last but not least, serious oxidative stress and structural damage to mitochondria.
Collapse
Affiliation(s)
- Patrizia Bottoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (A.P.); (S.S.); (A.U.); (R.S.)
- Correspondence:
| | - Alessandro Pontoglio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (A.P.); (S.S.); (A.U.); (R.S.)
| | - Salvatore Scarà
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (A.P.); (S.S.); (A.U.); (R.S.)
| | | | - Andrea Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (A.P.); (S.S.); (A.U.); (R.S.)
- Dipartimento di Medicina di Laboratorio, Fondazione Policlinico Gemelli, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Roberto Scatena
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (A.P.); (S.S.); (A.U.); (R.S.)
- Dipartimento di Medicina di Laboratorio, Madre Giuseppina Vannini Hospital, Via di Acqua Bullicante 4, 00177 Rome, Italy
| |
Collapse
|
13
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Ning C, Su S, Li J, Kong D, Cai H, Qin Z, Xing H, Chen X, He J. Evaluation of a Clinically Relevant Drug-Drug Interaction Between Rosuvastatin and Clopidogrel and the Risk of Hepatotoxicity. Front Pharmacol 2021; 12:715577. [PMID: 34646133 PMCID: PMC8504577 DOI: 10.3389/fphar.2021.715577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: The combination therapy of rosuvastatin (RSV) and the platelet inhibitor clopidogrel (CP) is widely accepted in the management of cardiovascular diseases. The objective of the present study was to identify the mechanism of RSV–CP DDI and evaluate the risk of hepatotoxicity associated with the concomitant use of CP. Methods: We first studied the effect of CP and its major circulating metabolite, carboxylic acid metabolite (CPC), on RSV transport by overexpressing cells and membrane vesicles. Second, we investigated whether a rat model could replicate this DDI and then be used to conduct mechanistic studies and assess the risk of hepatotoxicity. Then, cytotoxicity assay in hepatocytes, biochemical examination, and histopathology were performed to measure the magnitude of liver injury in the presence and absence of DDI. Results: CP inhibited OATP1B1-mediated transport of RSV with an IC50 value of 27.39 μM. CP and CPC inhibited BCRP-mediated RSV transport with IC50 values of <0.001 and 5.96 μM, respectively. The CP cocktail (0.001 μM CP plus 2 μM CPC) significantly inhibited BCRP-mediated transport of RSV by 26.28%. Multiple p.o. doses of CP significantly increased intravenous RSV plasma AUC0-infinity by 76.29% and decreased intravenous RSV CL by 42.62%. Similarly, multiple p.o. doses of CP significantly increased p.o. RSV plasma AUC0-infinity by 87.48% and decreased p.o. RSV CL by 43.27%. CP had no effect on cell viability, while RSV exhibited dose-dependent cytotoxicity after 96 h incubation. Co-incubation of 100 μM CP and RSV for 96 h significantly increased intracellular concentrations and cell-to-medium concentration ratios of RSV and reduced hepatocyte viability. Histological evaluation of liver specimens showed patterns of drug-induced liver injury. Cholestasis was found in rats in the presence of DDI. Conclusion: CP is not a clinically relevant inhibitor for OATP1B1 and OATP1B3. The primary mechanism of RSV–CP DDI can be attributed to the inhibition of intestinal BCRP by CP combined with the inhibition of hepatic BCRP by CPC. The latter is likely to be more clinically relevant and be a contributing factor for increased hepatotoxicity in the presence of DDI.
Collapse
Affiliation(s)
- Chen Ning
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengdi Su
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaming Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dexuan Kong
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Cai
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiying Qin
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Han Xing
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiake He
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Zechner J, Britza SM, Farrington R, Byard RW, Musgrave IF. Flavonoid-statin interactions causing myopathy and the possible significance of OATP transport, CYP450 metabolism and mevalonate synthesis. Life Sci 2021; 291:119975. [PMID: 34560084 DOI: 10.1016/j.lfs.2021.119975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, statins, are a primary treatment for hyperlipidemic cardiovascular diseases which are a leading global cause of death. Statin therapy is life saving and discontinuation due to adverse events such as myotoxicity may lead to unfavourable outcomes. There is no known mechanism for statin-induced myotoxicity although it is theorized that it is due to inhibition of downstream products of the HMG-CoA pathway. It is known that drug-drug interactions with conventional medicines exacerbate the risk of statin-induced myotoxicity, though little attention has been paid to herb-drug interactions with complementary medicines. Flavonoids are a class of phytochemicals which can be purchased as high dose supplements. There is evidence that flavonoids can raise statin plasma levels, increasing the risk of statin-induced myopathy. This could be due to pharmacokinetic interactions involving hepatic cytochrome 450 (CYP450) metabolism and organic anion transporter (OATP) absorption. There is also the potential for flavonoids to directly and indirectly inhibit HMG-CoA reductase which could contraindicate statin-therapy. This review aims to discuss what is currently known about the potential for high dose flavonoids to interact with the hepatic CYP450 metabolism, OATP uptake of statins or their ability to interact with HMG-CoA reductase. Flavonoids of particular interest will be covered and the difficulties of examining herbal products will be discussed throughout.
Collapse
Affiliation(s)
- Joshua Zechner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Susan M Britza
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Rachael Farrington
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Roger W Byard
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Forensic Science SA, Adelaide, SA 5000, Australia
| | - Ian F Musgrave
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
16
|
Tornio A, Filppula AM, Backman JT. Translational aspects of cytochrome P450-mediated drug-drug interactions: A case study with clopidogrel. Basic Clin Pharmacol Toxicol 2021; 130 Suppl 1:48-59. [PMID: 34410044 DOI: 10.1111/bcpt.13647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]
Abstract
Multimorbidity, polypharmacotherapy and drug interactions are increasingly common in the ageing population. Many drug-drug interactions (DDIs) are caused by perpetrator drugs inhibiting or inducing cytochrome P450 (CYP) enzymes, resulting in alterations of the plasma concentrations of a victim drug. DDIs can have a major negative health impact, and in the past, unrecognized DDIs have resulted in drug withdrawals from the market. Signals to investigate DDIs may emerge from a variety of sources. Nowadays, standard methods are widely available to identify and characterize the mechanisms of CYP-mediated DDIs in vitro. Clinical pharmacokinetic studies, in turn, provide experimental data on pharmacokinetic outcomes of DDIs. Physiologically based pharmacokinetic (PBPK) modelling utilizing both in vitro and in vivo data is a powerful tool to predict different DDI scenarios. Finally, epidemiological studies can provide estimates on the health outcomes of DDIs. Thus, to fully characterize the mechanisms, clinical effects and implications of CYP-mediated DDIs, translational research approaches are required. This minireview provides an overview of translational approaches to study CYP-mediated DDIs, going beyond regulatory DDI guidelines, and an illustrative case study of how the DDI potential of clopidogrel was unveiled by combining these different methods.
Collapse
Affiliation(s)
- Aleksi Tornio
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Anne M Filppula
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Afshar ME, Abraha HY, Bakooshli MA, Davoudi S, Thavandiran N, Tung K, Ahn H, Ginsberg HJ, Zandstra PW, Gilbert PM. A 96-well culture platform enables longitudinal analyses of engineered human skeletal muscle microtissue strength. Sci Rep 2020; 10:6918. [PMID: 32332853 PMCID: PMC7181829 DOI: 10.1038/s41598-020-62837-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional (3D) in vitro models of human skeletal muscle mimic aspects of native tissue structure and function, thereby providing a promising system for disease modeling, drug discovery or pre-clinical validation, and toxicity testing. Widespread adoption of this research approach is hindered by the lack of easy-to-use platforms that are simple to fabricate and that yield arrays of human skeletal muscle micro-tissues (hMMTs) in culture with reproducible physiological responses that can be assayed non-invasively. Here, we describe a design and methods to generate a reusable mold to fabricate a 96-well platform, referred to as MyoTACTIC, that enables bulk production of 3D hMMTs. All 96-wells and all well features are cast in a single step from the reusable mold. Non-invasive calcium transient and contractile force measurements are performed on hMMTs directly in MyoTACTIC, and unbiased force analysis occurs by a custom automated algorithm, allowing for longitudinal studies of function. Characterizations of MyoTACTIC and resulting hMMTs confirms the capability of the device to support formation of hMMTs that recapitulate biological responses. We show that hMMT contractile force mirrors expected responses to compounds shown by others to decrease (dexamethasone, cerivastatin) or increase (IGF-1) skeletal muscle strength. Since MyoTACTIC supports hMMT long-term culture, we evaluated direct influences of pancreatic cancer chemotherapeutics agents on contraction competent human skeletal muscle myotubes. A single application of a clinically relevant dose of Irinotecan decreased hMMT contractile force generation, while clear effects on myotube atrophy were observed histologically only at a higher dose. This suggests an off-target effect that may contribute to cancer associated muscle wasting, and highlights the value of the MyoTACTIC platform to non-invasively predict modulators of human skeletal muscle function.
Collapse
Affiliation(s)
- Mohammad E Afshar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Haben Y Abraha
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Mohsen A Bakooshli
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Sadegh Davoudi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Nimalan Thavandiran
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Kayee Tung
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Henry Ahn
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Howard J Ginsberg
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada.,Michael Smith Laboratories and the School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Penney M Gilbert
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada. .,Department of Biochemistry, University of Toronto, Toronto, Canada. .,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
18
|
Rheumatoid arthritis downregulates the drug transporter OATP1B1: Fluvastatin as a probe. Eur J Pharm Sci 2020; 146:105264. [DOI: 10.1016/j.ejps.2020.105264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
|
19
|
Han LW, Gao C, Zhang Y, Wang J, Mao Q. Transport of Bupropion and its Metabolites by the Model CHO and HEK293 Cell Lines. Drug Metab Lett 2020; 13:25-36. [PMID: 30488806 DOI: 10.2174/1872312813666181129101507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Bupropion (BUP) is widely used as an antidepressant and smoking cessation aid. There are three major pharmacologically active metabolites of BUP, Erythrohydrobupropion (EB), Hydroxybupropion (OHB) and Threohydrobupropion (TB). At present, the mechanisms underlying the overall disposition and systemic clearance of BUP and its metabolites have not been well understood, and the role of transporters has not been studied. OBJECTIVE The goal of this study was to investigate whether BUP and its active metabolites are substrates of the major hepatic uptake and efflux transporters. METHOD CHO or HEK293 cell lines or plasma membrane vesicles that overexpress OATP1B1, OATP1B3, OATP2B1, OATP4A1, OCT1, BCRP, MRP2 or P-gp were used in cellular or vesicle uptake and inhibition assays. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) was used to quantify transport activity. RESULTS BUP and its major active metabolites were actively transported into the CHO or HEK293 cells overexpressing OATP1B1, OATP1B3 or OATP2B1; however, such cellular active uptake could not be inhibited at all by prototypical inhibitors of any of the OATP transporters. These compounds were not transported by OCT1, BCRP, MRP2 or P-gp either. These results suggest that the major known hepatic transporters likely play a minor role in the overall disposition and systemic clearance of BUP and its active metabolites in humans. We also demonstrated that BUP and its metabolites were not transported by OATP4A1, an uptake transporter on the apical membrane of placental syncytiotrophoblasts, suggesting that OATP4A1 is not responsible for the transfer of BUP and its metabolites from the maternal blood to the fetal compartment across the placental barrier in pregnant women. CONCLUSION BUP and metabolites are not substrates of the major hepatic transporters tested and thus these hepatic transporters likely do not play a role in the overall disposition of the drug. Our results also suggest that caution should be taken when using the model CHO and HEK293 cell lines to evaluate potential roles of transporters in drug disposition.
Collapse
Affiliation(s)
- Lyrialle W Han
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Chunying Gao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Yuchen Zhang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Joanne Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
20
|
Belcaro G, Cesarone MR, Scipione C, Scipione V, Dugall M, Shu H, Peterzan P, Corsi M, Luzzi R, Hosoi M, Feragalli B, Cotellese R. Delayed progression of atherosclerosis and cardiovascular events in asymptomatic patients with atherosclerotic plaques: 3-year prevention with the supplementation with Pycnogenol®+Centellicum®. Minerva Cardioangiol 2019; 68:15-21. [PMID: 31625707 DOI: 10.23736/s0026-4725.19.05051-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was the evaluation of the progression of atherosclerosis and the occurrence of cardiovascular events in asymptomatic patients with atherosclerotic plaques (Class IV and V) and arterial wall atherosclerotic lesions and intima-media thickening (IMT). METHODS Progression of atherosclerotic lesions, oxidative stress and IMT were measured in a 3-year concept, pilot registry study. All subjects were followed with standard management (SM) - including diet and exercise - to control cardiovascular risk factors.The target measurements were: the rate of progression of the atherosclerotic lesions (the passage of subjects from one atherosclerotic class to the next class); the occurrence of "hard" cardiovascular events (i.e. myocardial infarction or strokes; angina was not considered a "hard" event). The study included 3 groups: 1) SM): 2) subjects using cardioaspirin (100 mg/day) and SM; 3) subjects following SM, taking cardioaspirin and supplemented with Pycnogenol® (150 mg/day)+Centellicum® (450 mg/day). RESULTS The groups were comparable for age and baseline evaluations. 54 subjects completed the 3 year study with standard management only, 74 with aspirin and 56 with aspirin and Pycnogenol®+Centellicum®. The BMI of all subjects was <26. No side effects and no tolerability problems were observed with the supplements. Progression was defined by the passage of the atherosclerotic lesions from one class to the next more advanced class. Progression in the supplement group was observed in 5.3% of the subjects in comparison with a progression >20% in the other groups (P<0.05). In comparison with the SM group and the cardioaspirin group the rate of 'hard' cardiovascular events, requiring hospital admissions were <4% with the combined supplement in comparison with a value >12% in the other two groups (22.22% event rate in the SM group). The reduction produced by the aspirin only was significantly lower (P<0.05) in comparison with supplemented patients. Antiplatelet management appears to reduce a significant number of events (P<0.05) without a real effect on progression of atherosclerotic lesions. The additional parameters of carotid IMT and oxidative stress were also lower (P<0.05) with the supplements. CONCLUSIONS In conclusion, this study indicates that the combined supplementation with Pycnogenol®+Centelicum® appears to control both the progression of atherosclerosis and the occurrence of cardiovascular events in this 3 year study. Larger studies, in a wider population with more complex and less standardized conditions may be needed.
Collapse
Affiliation(s)
- Gianni Belcaro
- Irvine3 Labs & San Valentino Vascular Screening Project, Chieti-Pescara University, Chieti, Italy - .,International Agency for Pharma-Standard Supplements (IA-PSS), Pescara, Italy - .,DSMO-Biotec, Chieti-Pescara University, Chieti, Italy -
| | - Maria R Cesarone
- Irvine3 Labs & San Valentino Vascular Screening Project, Chieti-Pescara University, Chieti, Italy.,International Agency for Pharma-Standard Supplements (IA-PSS), Pescara, Italy.,DSMO-Biotec, Chieti-Pescara University, Chieti, Italy
| | - Claudia Scipione
- Irvine3 Labs & San Valentino Vascular Screening Project, Chieti-Pescara University, Chieti, Italy.,International Agency for Pharma-Standard Supplements (IA-PSS), Pescara, Italy
| | - Valeria Scipione
- Irvine3 Labs & San Valentino Vascular Screening Project, Chieti-Pescara University, Chieti, Italy.,International Agency for Pharma-Standard Supplements (IA-PSS), Pescara, Italy
| | - Mark Dugall
- Irvine3 Labs & San Valentino Vascular Screening Project, Chieti-Pescara University, Chieti, Italy.,International Agency for Pharma-Standard Supplements (IA-PSS), Pescara, Italy
| | - Hu Shu
- Irvine3 Labs & San Valentino Vascular Screening Project, Chieti-Pescara University, Chieti, Italy.,International Agency for Pharma-Standard Supplements (IA-PSS), Pescara, Italy
| | - Paula Peterzan
- Irvine3 Labs & San Valentino Vascular Screening Project, Chieti-Pescara University, Chieti, Italy.,International Agency for Pharma-Standard Supplements (IA-PSS), Pescara, Italy
| | - Marcello Corsi
- Irvine3 Labs & San Valentino Vascular Screening Project, Chieti-Pescara University, Chieti, Italy.,International Agency for Pharma-Standard Supplements (IA-PSS), Pescara, Italy
| | - Roberta Luzzi
- Irvine3 Labs & San Valentino Vascular Screening Project, Chieti-Pescara University, Chieti, Italy.,International Agency for Pharma-Standard Supplements (IA-PSS), Pescara, Italy
| | - Morio Hosoi
- Irvine3 Labs & San Valentino Vascular Screening Project, Chieti-Pescara University, Chieti, Italy.,International Agency for Pharma-Standard Supplements (IA-PSS), Pescara, Italy
| | | | | |
Collapse
|
21
|
Lam YWF. Principles of Pharmacogenomics. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Utility of curcumin for the treatment of diabetes mellitus: Evidence from preclinical and clinical studies. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2018. [DOI: 10.1016/j.jnim.2018.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Tiwari SK, Singh DK, Ladumor MK, Chakraborti AK, Singh S. Study of degradation behaviour of montelukast sodium and its marketed formulation in oxidative and accelerated test conditions and prediction of physicochemical and ADMET properties of its degradation products using ADMET Predictor™. J Pharm Biomed Anal 2018; 158:106-118. [DOI: 10.1016/j.jpba.2018.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023]
|
24
|
Effects of hydrochlorothiazide and amlodipine on single oral dose pharmacokinetics of valsartan in healthy Korean subjects: Population model-based approach. Eur J Pharm Sci 2018; 118:154-164. [DOI: 10.1016/j.ejps.2018.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 01/11/2023]
|
25
|
Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, Yue W. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci 2018. [PMID: 29538325 PMCID: PMC5877716 DOI: 10.3390/ijms19030855] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA.
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| |
Collapse
|
26
|
Shah RR, Gaedigk A. Precision medicine: does ethnicity information complement genotype-based prescribing decisions? Ther Adv Drug Saf 2018; 9:45-62. [PMID: 29318005 PMCID: PMC5753996 DOI: 10.1177/2042098617743393] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
Inter-ethnic differences in drug response are all too well known. These are underpinned by a number of factors, including pharmacogenetic differences across various ethnic populations. Precision medicine relies on genotype-based prescribing decisions with the aim of maximizing efficacy and mitigating the risks. When there is no access to genotyping tests, ethnicity is frequently regarded as a proxy of the patient's probable genotype on the basis of overall population-based frequency of genetic variations in the ethnic group the patient belongs to, with some variations being ethnicity-specific. However, ever-increasing transcontinental migration of populations and the resulting admixing of populations have undermined the utility of self-identified ethnicity in predicting the genetic ancestry, and therefore the genotype, of the patient. An example of the relevance of genetic ancestry of a patient is the inadequate performance of European-derived pharmacogenetic dosing algorithms of warfarin in African Americans, Brazilians and Caribbean Hispanics. Consequently, genotyping a patient potentially requires testing for all known clinically actionable variants that the patient may harbour, and new variants that are likely to be identified using state-of the art next-generation sequencing-based methods. Furthermore, self-identified ethnicity is associated with a number of ethnicity-related attributes and non-genetic factors that potentially influence the risk of phenoconversion (genotype-phenotype discordance), which may adversely impact the success of genotype-based prescribing decisions. Therefore, while genotype-based prescribing decisions are important in implementing precision medicine, ethnicity should not be disregarded.
Collapse
Affiliation(s)
- Rashmi R. Shah
- Pharmaceutical Consultant, 8 Birchdale, Gerrards Cross, Buckinghamshire, SL9 7JA, UK
| | - Andrea Gaedigk
- Director, Pharmacogenetics Core Laboratory, Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy-Kansas City, Kansas City, MO and School of Medicine, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
27
|
Shebley M, Fu W, Badri P, Bow DAJ, Fischer V. Physiologically Based Pharmacokinetic Modeling Suggests Limited Drug-Drug Interaction Between Clopidogrel and Dasabuvir. Clin Pharmacol Ther 2017; 102:679-687. [PMID: 28411400 PMCID: PMC5599937 DOI: 10.1002/cpt.689] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 12/14/2022]
Abstract
Dasabuvir, a nonnucleoside NS5B polymerase inhibitor, is a sensitive substrate of cytochrome P450 (CYP) 2C8 with a potential for drug-drug interaction (DDI) with clopidogrel. A physiologically based pharmacokinetic (PBPK) model was developed for dasabuvir to evaluate the DDI potential with clopidogrel, the acyl-β-D glucuronide metabolite of which has been reported as a strong mechanism-based inhibitor of CYP2C8 based on an interaction with repaglinide. In addition, the PBPK model for clopidogrel and its metabolite were updated with additional in vitro data. Sensitivity analyses using these PBPK models suggested that CYP2C8 inhibition by clopidogrel acyl-β-D glucuronide may not be as potent as previously suggested. The dasabuvir and updated clopidogrel PBPK models predict a moderate increase of 1.5-1.9-fold for Cmax and 1.9-2.8-fold for AUC of dasabuvir when coadministered with clopidogrel. While the PBPK results suggest there is a potential for DDI between dasabuvir and clopidogrel, the magnitude is not expected to be clinically relevant.
Collapse
Affiliation(s)
- M Shebley
- Drug Metabolism, Pharmacokinetics and BioanalysisAbbVie Inc.North ChicagoIllinoisUSA
- Clinical Pharmacology and PharmacometricsAbbVie Inc.North ChicagoIllinoisUSA
| | - W Fu
- Drug Metabolism, Pharmacokinetics and BioanalysisAbbVie Inc.North ChicagoIllinoisUSA
- U.S. Food and Drug Administration, CDEROffice of Clinical PharmacologySilver SpringMarylandUSA
| | - P Badri
- Clinical Pharmacology and PharmacometricsAbbVie Inc.North ChicagoIllinoisUSA
- Vertex PharmaceuticalsBostonMassachusettsUSA
| | - DAJ Bow
- Drug Metabolism, Pharmacokinetics and BioanalysisAbbVie Inc.North ChicagoIllinoisUSA
| | - V Fischer
- Drug Metabolism, Pharmacokinetics and BioanalysisAbbVie Inc.North ChicagoIllinoisUSA
| |
Collapse
|
28
|
Rodrigues AD, Taskar KS, Kusuhara H, Sugiyama Y. Endogenous Probes for Drug Transporters: Balancing Vision With Reality. Clin Pharmacol Ther 2017; 103:434-448. [DOI: 10.1002/cpt.749] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Affiliation(s)
- AD Rodrigues
- Pharmacokinetics; Dynamics & Metabolism, Medicine Design, Pfizer Inc.; Groton Connecticut USA
| | - KS Taskar
- Mechanistic Safety and Disposition; IVIVT, GlaxoSmithKline; Ware Hertfordshire UK
| | - H Kusuhara
- Laboratory of Molecular Pharmacokinetics; Graduate School of Pharmaceutical Sciences, University of Tokyo; Tokyo Japan
| | - Y Sugiyama
- RIKEN Innovation Center; Research Cluster for Innovation; RIKEN Kanagawa Japan
| |
Collapse
|
29
|
Ma Y, Fu Y, Khojasteh SC, Dalvie D, Zhang D. Glucuronides as Potential Anionic Substrates of Human Cytochrome P450 2C8 (CYP2C8). J Med Chem 2017; 60:8691-8705. [DOI: 10.1021/acs.jmedchem.7b00510] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Deepak Dalvie
- Celgene Corporation, 10300 Campus
Point Drive, San Diego California 92121, United States
| | | |
Collapse
|
30
|
Belcaro G, Cornelli U. Variations in Echogenicity in Carotid and Femoral Atherosclerotic Plaques with Pycnogenol + Centella Asiatica Supplementation. Int J Angiol 2016; 26:95-101. [PMID: 28566935 DOI: 10.1055/s-0036-1594292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This registry study evaluated echogenicity of carotid-femoral plaques in asymptomatic subjects with increased oxidative stress and risk factors (mild hypertension, hypercholesterolemia). Supplementation with the combination Pycnogenol-CA (centella asiatica) on the echogenicity of plaques was assessed at 6 months (79 subjects). A standard management (SM) plan was used in all subjects (control of risk factors, lifestyle changes); 36 subjects used the supplements +SM; 43 SM only. The groups were comparable. High-resolution ultrasound evaluated echogenicity and plaque structure. Pycnogenol (150 mg/day) and CA (Centellicum, 450 mg/day) were used. At 6 months, cholesterol was reduced (p < 0.05) in both groups (difference between groups not significant). At 6 months, plasma free radicals were decreased with the supplements (17.64%; p < 0.05; vs <2% in controls). The plaque stability index increased from 11.22;2.3 to 22.4;1.1 (p < 0.05) with the supplements; no significant changes were seen in controls. Plaque echogenicity (% of "whiter" component in images) increased with supplementation from 16.7;1.7% to 34.2;2% (p < 0.05); no variations were observed in controls. The maximum plaque height decreased (p < 0.05) with the supplements. No significant variations were observed in controls. Plaque length was decreased (p < 0.05) in the supplement group with no changes in controls. The number of plaques (carotid, femoral bifurcations) decreased with supplementation; no significant changes were observed in controls. No adverse events, tolerability problems, or variations in routine blood tests were recorded. The combination Pycnogenol-CA appears to improve echogenicity and stability of complex plaques in 6 months.
Collapse
Affiliation(s)
- Gianni Belcaro
- Irvine Labs, Chieti-Pescara University, Spoltore, Pescara, Italy
| | - Umberto Cornelli
- Irvine Labs, Chieti-Pescara University, Spoltore, Pescara, Italy
| |
Collapse
|
31
|
Varma MV, Kimoto E, Scialis R, Bi Y, Lin J, Eng H, Kalgutkar AS, El-Kattan AF, Rodrigues AD, Tremaine LM. Transporter-Mediated Hepatic Uptake Plays an Important Role in the Pharmacokinetics and Drug-Drug Interactions of Montelukast. Clin Pharmacol Ther 2016; 101:406-415. [PMID: 27648490 DOI: 10.1002/cpt.520] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
Abstract
Montelukast, a leukotriene receptor antagonist commonly prescribed for treatment of asthma, is primarily metabolized by cytochrome P450 (CYP)2C8, and has been suggested as a probe substrate for investigating CYP2C8 activity in vivo. We evaluated the quantitative role of hepatic uptake transport in its pharmacokinetics and drug-drug interactions (DDIs). Montelukast was characterized with significant active uptake in human hepatocytes, and showed affinity towards organic anion transporting polypeptides (OATPs) in transfected cell systems. Single-dose rifampicin, an OATP inhibitor, decreased montelukast clearance in rats and monkeys. Clinical DDIs of montelukast were evaluated using physiologically based pharmacokinetic modeling; and simulation of the interactions with gemfibrozil-CYP2C8 and OATP1B1/1B3 inhibitor, clarithromycin-CYP3A and OATP1B1/1B3 inhibitor, and itraconazole-CYP3A inhibitor, implicated OATPs-CYP2C8-CYP2C8 interplay as the primary determinant of montelukast pharmacokinetics. In conclusion, hepatic uptake plays a key role in the pharmacokinetics of montelukast, which should be taken into account when interpreting clinical interactions.
Collapse
Affiliation(s)
- M V Varma
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - E Kimoto
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - R Scialis
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - Y Bi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - J Lin
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - H Eng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - A S Kalgutkar
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Cambridge, Massachusetts, USA
| | - A F El-Kattan
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Cambridge, Massachusetts, USA
| | - A D Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| | - L M Tremaine
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
32
|
Yee SW, Giacomini MM, Hsueh CH, Weitz D, Liang X, Goswami S, Kinchen JM, Coelho A, Zur AA, Mertsch K, Brian W, Kroetz DL, Giacomini KM. Metabolomic and Genome-wide Association Studies Reveal Potential Endogenous Biomarkers for OATP1B1. Clin Pharmacol Ther 2016; 100:524-536. [PMID: 27447836 PMCID: PMC6365106 DOI: 10.1002/cpt.434] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022]
Abstract
Transporter-mediated drug-drug interactions (DDIs) are a major cause of drug toxicities. Using published genome-wide association studies (GWAS) of the human metabolome, we identified 20 metabolites associated with genetic variants in organic anion transporter, OATP1B1 (P < 5 × 10-8 ). Of these, 12 metabolites were significantly higher in plasma samples from volunteers dosed with the OATP1B1 inhibitor, cyclosporine (CSA) vs. placebo (q-value < 0.2). Conjugated bile acids and fatty acid dicarboxylates were among the metabolites discovered using both GWAS and CSA administration. In vitro studies confirmed tetradecanedioate (TDA) and hexadecanedioate (HDA) were novel substrates of OATP1B1 as well as OAT1 and OAT3. This study highlights the use of multiple datasets for the discovery of endogenous metabolites that represent potential in vivo biomarkers for transporter-mediated DDIs. Future studies are needed to determine whether these metabolites can serve as qualified biomarkers for organic anion transporters. Quantitative relationships between metabolite levels and modulation of transporters should be established.
Collapse
Affiliation(s)
- S W Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - M M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - C-H Hsueh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - D Weitz
- Research and Development Drug Disposition, Sanofi-Aventis Deutschland, Frankfurt, Germany
| | - X Liang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - S Goswami
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - J M Kinchen
- Metabolon, Inc., Durham, North Carolina, USA
| | - A Coelho
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - A A Zur
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - K Mertsch
- Research and Development Drug Disposition, Sanofi-Aventis Deutschland, Frankfurt, Germany
| | - W Brian
- Disposition Safety and Animal Research, Sanofi-Aventis, Great Valley, Pennsylvania, USA
| | - D L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - K M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
33
|
Kim SJ, Yoshikado T, Ieiri I, Maeda K, Kimura M, Irie S, Kusuhara H, Sugiyama Y. Clarification of the Mechanism of Clopidogrel-Mediated Drug-Drug Interaction in a Clinical Cassette Small-dose Study and Its Prediction Based on In Vitro Information. Drug Metab Dispos 2016; 44:1622-32. [PMID: 27457785 DOI: 10.1124/dmd.116.070276] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/22/2016] [Indexed: 11/22/2022] Open
Abstract
Clopidogrel is reported to be associated with cerivastatin-induced rhabdomyolysis, and clopidogrel and its metabolites are capable of inhibiting CYP2C8 and OATP 1B1 in vitro. The objective of the present study was to identify the mechanism of clopidogrel-mediated drug-drug interactions (DDIs) on the pharmacokinetics of OATP1B1 and/or CYP2C8 substrates in vivo. A clinical cassette small-dose study using OATPs, CYP2C8, and OATP1B1/CYP2C8 probe drugs (pitavastatin, pioglitazone, and repaglinide, respectively) with or without the coadministration of either 600 mg rifampicin (an inhibitor for OATPs), 200 mg trimethoprim (an inhibitor for CYP2C8), or 300 mg clopidogrel was performed, and the area under the concentration-time curve (AUC) ratios (AUCRs) for probe substrates were predicted using a static model. Clopidogrel increased the AUC of pioglitazone (2.0-fold) and repaglinide (3.1-fold) but did not significantly change the AUC of pitavastatin (1.1-fold). In addition, the AUC of pioglitazone M4, a CYP2C8-mediated metabolite of pioglitazone, was reduced to 70% of the control by coadministration of clopidogrel. The predicted AUCRs using the mechanism-based inhibition of CYP2C8 by clopidogrel acyl-β-glucuronide were similar to the observed AUCRs, and the predicted AUCR (1.1) of repaglinide using only the inhibition of OATP1B1 did not reach the observed AUCR (3.1). In conclusion, a single 300 mg of clopidogrel mainly inhibits CYP2C8-mediated metabolism by clopidogrel acyl-β-glucuronide, but its effect on the pharmacokinetics of OATP1B1 substrates is negligible. Clopidogrel is expected to have an effect not only on CYP2C8 substrates, but also dual CYP2C8/OATP1B1 substrates as seen in the case of repaglinide.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Ichiro Ieiri
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Kazuya Maeda
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Miyuki Kimura
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Shin Irie
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Hiroyuki Kusuhara
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| |
Collapse
|
34
|
El-Kattan AF, Varma MV, Steyn SJ, Scott DO, Maurer TS, Bergman A. Projecting ADME Behavior and Drug-Drug Interactions in Early Discovery and Development: Application of the Extended Clearance Classification System. Pharm Res 2016; 33:3021-3030. [PMID: 27620173 DOI: 10.1007/s11095-016-2024-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE To assess the utility of Extended Clearance Classification System (ECCS) in understanding absorption, distribution, metabolism, and elimination (ADME) attributes and enabling victim drug-drug interaction (DDI) predictions. METHODS A database of 368 drugs with relevant ADME parameters, main metabolizing enzymes, uptake transporters, efflux transporters, and highest change in exposure (%AUC) in presence of inhibitors was developed using published literature. Drugs were characterized according to ECCS using ionization, molecular weight and estimated permeability. RESULTS Analyses suggested that ECCS class 1A drugs are well absorbed and systemic clearance is determined by metabolism mediated by CYP2C, esterases, and UGTs. For class 1B drugs, oral absorption is high and the predominant clearance mechanism is hepatic uptake mediated by OATP transporters. High permeability neutral/basic drugs (class 2) showed high oral absorption, with metabolism mediated generally by CYP3A, CYP2D6 and UGTs as the predominant clearance mechanism. Class 3A/4 drugs showed moderate absorption with dominant renal clearance involving OAT/OCT2 transporters. Class 3B drugs showed low to moderate absorption with hepatic uptake (OATPs) and/or renal clearance as primary clearance mechanisms. The highest DDI risk is typically seen with class 2/1B/3B compounds manifested by inhibition of either CYP metabolism or active hepatic uptake. Class 2 showed a wider range in AUC change likely due to a variety of enzymes involved. DDI risk for class 3A/4 is small and associated with inhibition of renal transporters. CONCLUSIONS ECCS provides a framework to project ADME profiles and further enables prediction of victim DDI liabilities in drug discovery and development.
Collapse
Affiliation(s)
- Ayman F El-Kattan
- Pharmacokinetcis, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts, USA.
| | - Manthena V Varma
- Pharmacokinetcis, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut, USA
| | - Stefan J Steyn
- Pharmacokinetcis, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Dennis O Scott
- Pharmacokinetcis, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Tristan S Maurer
- Pharmacokinetcis, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Arthur Bergman
- Clinical Pharmacology, Pfizer Inc., Groton, Connecticut, USA
| |
Collapse
|
35
|
Jiang J, Tang Q, Feng J, Dai R, Wang Y, Yang Y, Tang X, Deng C, Zeng H, Zhao Y, Zhang F. Association between SLCO1B1 -521T>C and -388A>G polymorphisms and risk of statin-induced adverse drug reactions: A meta-analysis. SPRINGERPLUS 2016; 5:1368. [PMID: 27606156 PMCID: PMC4991977 DOI: 10.1186/s40064-016-2912-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
An increasing number of studies have investigated the association between SLCO1B1 -521T>C and -388A>G polymorphisms and the risk of statin-induced adverse drug reactions (ADRs), but the results have been inconsistent. This meta-analysis was performed to gain more insight into the relationship. PubMed, Embase, Cochrane Library and Web of Science were searched for relevant articles published before March 5th, 2015. The quality of included studies was evaluated by the Newcastle-Ottawa Quality scale. Pooled effect estimates (odds ratios [ORs] or hazard ratios [HRs) and corresponding 95 % confidence intervals (CIs) were calculated to assess the association in overall and subgroup analyses for various genetic models. Begg's rank correlation test and Egger's linear regression test were used to examine the publication bias. A total of nine cohort and four case-control studies involving 11, 246 statin users, of whom 2, 355 developing ADRs were included in the analysis. Combined analysis revealed a significant association between the SLCO1B1-521T>C polymorphism and increased risk for ADRs caused by various statins, but the synthesis heterogeneity was generally large (dominant model: pooled effect estimate = 1.85, 95 % CI 1.20-2.85, P = 0.005; I (2) = 80.70 %, Pheterogeneity < 0.001). Subgroup analysis by statin type showed that the ADRs risk was significantly elevated among simvastatin users (dominant model: pooled effect estimate = 3.43, 95 % CI 1.80-6.52, P = 0.001; I (2) = 59.60 %, Pheterogeneity = 0.060), but not among atorvastatin users. No significant relationship was found between the -388A>G polymorphism and ADRs caused by various statins (dominant model: pooled effect estimate = 0.94, 95 % CI 0.79-1.13, P = 0.526; I (2) = 40.10 %, Pheterogeneity = 0.196). The meta-analysis suggests that SLCO1B1 -521T>C polymorphism may be a risk factor for statin-induced ADRs, especially in simvastatin therapy. Conversely, there may be no significant association for -388A>G polymorphism.
Collapse
Affiliation(s)
- Jiajia Jiang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016 China
| | - Qing Tang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016 China
| | - Jing Feng
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016 China
| | - Rong Dai
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016 China
| | - Yang Wang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016 China
| | - Yuan Yang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xiaojun Tang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016 China
| | - Changkai Deng
- Chengdu Women's and Children's Central Hospital, Chengdu, 610000 Sichuan China
| | - Huan Zeng
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016 China
| | - Yong Zhao
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016 China
| | - Fan Zhang
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
36
|
Itkonen MK, Tornio A, Neuvonen M, Neuvonen PJ, Niemi M, Backman JT. Clopidogrel Markedly Increases Plasma Concentrations of CYP2C8 Substrate Pioglitazone. Drug Metab Dispos 2016; 44:1364-71. [PMID: 27260150 DOI: 10.1124/dmd.116.070375] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/02/2016] [Indexed: 01/20/2023] Open
Abstract
The glucose-lowering drug pioglitazone undergoes hepatic CYP2C8-mediated biotransformation to its main metabolites. The antiplatelet drug clopidogrel is metabolized to clopidogrel acyl-β-d-glucuronide, which was recently found to be a strong time-dependent inhibitor of CYP2C8 in humans. Therefore, we studied the effect of clopidogrel on the pharmacokinetics of pioglitazone. In a randomized crossover study, 10 healthy volunteers ingested either 300 mg of clopidogrel on day 1, and 75 mg on days 2 and 3, or placebo. Pioglitazone 15 mg was administered 1 hour after placebo and clopidogrel on day 1. Plasma concentrations of pioglitazone, clopidogrel, and their main metabolites were measured up to 72 hours. Clopidogrel increased the area under the plasma concentration-time curve (AUC0-∞) of pioglitazone 2.1-fold [P < 0.001, 90% confidence interval (CI) 1.8-2.6] and prolonged its half-life from 6.7 to 11 hours (P = 0.002). The peak concentration of pioglitazone was unaffected but the concentration at 24 hours was increased 4.5-fold (range 1.6-9.8; P < 0.001, 90% CI 3.17-6.45) by clopidogrel. The M-IV-to-pioglitazone AUC0-∞ ratio was 49% (P < 0.001, 90% CI 0.40-0.59) of that during the control phase, indicating that clopidogrel inhibited the CYP2C8-mediated biotransformation of pioglitazone. Clopidogrel increases the exposure to pioglitazone by inhibiting its CYP2C8-mediated biotransformation. In consequence, use of clopidogrel may increase the risk of fluid retention and other concentration-related adverse effects of pioglitazone.
Collapse
Affiliation(s)
- Matti K Itkonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
37
|
Vaidyanathan J, Yoshida K, Arya V, Zhang L. Comparing Various In Vitro Prediction Criteria to Assess the Potential of a New Molecular Entity to Inhibit Organic Anion Transporting Polypeptide 1B1. J Clin Pharmacol 2016; 56 Suppl 7:S59-72. [DOI: 10.1002/jcph.723] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Jayabharathi Vaidyanathan
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
| | - Kenta Yoshida
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
- Oak Ridge Institution for Science and Education (ORISE) Fellow
| | - Vikram Arya
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences; Center for Drug Evaluation and Research, Food and Drug Administration; Silver Spring MD
| |
Collapse
|
38
|
Estudante M, Soveral G, Morais JG, Benet LZ. Insights into solute carriers: physiological functions and implications in disease and pharmacokinetics. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00188b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SLCs transport many endogenous and exogenous compounds including drugs; SLCs dysfunction has implications in pharmacokinetics, drug toxicity or lack of efficacy.
Collapse
Affiliation(s)
- Margarida Estudante
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
| | - José G. Morais
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Leslie Z. Benet
- Department of Bioengineering and Therapeutic Sciences
- University of California
- San Francisco
- USA
| |
Collapse
|
39
|
Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev 2016; 68:168-241. [PMID: 26721703 DOI: 10.1124/pr.115.011411] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During the last 10-15 years, cytochrome P450 (CYP) 2C8 has emerged as an important drug-metabolizing enzyme. CYP2C8 is highly expressed in human liver and is known to metabolize more than 100 drugs. CYP2C8 substrate drugs include amodiaquine, cerivastatin, dasabuvir, enzalutamide, imatinib, loperamide, montelukast, paclitaxel, pioglitazone, repaglinide, and rosiglitazone, and the number is increasing. Similarly, many drugs have been identified as CYP2C8 inhibitors or inducers. In vivo, already a small dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a strong, irreversible inhibitor of CYP2C8. Interestingly, recent findings indicate that the acyl-β-glucuronides of gemfibrozil and clopidogrel cause metabolism-dependent inactivation of CYP2C8, leading to a strong potential for drug interactions. Also several other glucuronide metabolites interact with CYP2C8 as substrates or inhibitors, suggesting that an interplay between CYP2C8 and glucuronides is common. Lack of fully selective and safe probe substrates, inhibitors, and inducers challenges execution and interpretation of drug-drug interaction studies in humans. Apart from drug-drug interactions, some CYP2C8 genetic variants are associated with altered CYP2C8 activity and exhibit significant interethnic frequency differences. Herein, we review the current knowledge on substrates, inhibitors, inducers, and pharmacogenetics of CYP2C8, as well as its role in clinically relevant drug interactions. In addition, implications for selection of CYP2C8 marker and perpetrator drugs to investigate CYP2C8-mediated drug metabolism and interactions in preclinical and clinical studies are discussed.
Collapse
Affiliation(s)
- Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| |
Collapse
|
40
|
Montelukast Disposition: No Indication of Transporter-Mediated Uptake in OATP2B1 and OATP1B1 Expressing HEK293 Cells. Pharmaceutics 2015; 7:554-64. [PMID: 26694455 PMCID: PMC4695834 DOI: 10.3390/pharmaceutics7040554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022] Open
Abstract
Clinical studies with montelukast show variability in effect and polymorphic OATP2B1-dependent absorption has previously been implicated as a possible cause. This claim has been challenged with conflicting data and here we used OATP2B1-transfected HEK293 cells to clarify the mechanisms involved. For montelukast, no significant difference in cell uptake between HEK-OATP2B1 and empty vector cell lines was observed at pH 6.5 or pH 7.4, and no concentration-dependent uptake was detected. Montelukast is a carboxylic acid, a relatively potent inhibitor of OATP1B1, OATP1B3, and OATP2B1, and has previously been postulated to be actively transported into human hepatocytes. Using OATP1B1-transfected HEK293 cells and primary human hepatocytes in the presence of OATP inhibitors we demonstrate for the first time that active OATP-dependent transport is unlikely to play a significant role in the human disposition of montelukast.
Collapse
|
41
|
Itkonen MK, Tornio A, Neuvonen M, Neuvonen PJ, Niemi M, Backman JT. Clopidogrel Has No Clinically Meaningful Effect on the Pharmacokinetics of the Organic Anion Transporting Polypeptide 1B1 and Cytochrome P450 3A4 Substrate Simvastatin. Drug Metab Dispos 2015; 43:1655-60. [PMID: 26329790 DOI: 10.1124/dmd.115.065938] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/31/2015] [Indexed: 02/13/2025] Open
Abstract
Simvastatin and clopidogrel are commonly used together in the treatment of cardiovascular diseases. Organic anion transporting polypeptide (OATP) 1B1 activity markedly affects the hepatic uptake of simvastatin acid, whereas both simvastatin and simvastatin acid are sensitive to changes in cytochrome P450 3A4 activity. Clopidogrel and its metabolites inhibit OATP1B1 and CYP3A4 in vitro. We studied the effect of clopidogrel on the pharmacokinetics of simvastatin in a randomized crossover study. Twelve healthy volunteers ingested either a dose of placebo (control) or 300 mg of clopidogrel on day 1 and 75 mg on days 2 and 3. Simvastatin 40 mg was administered 1 hour after placebo and after clopidogrel on days 1 and 3. Plasma drug concentrations were measured for up to 12 hours. Clopidogrel 300 mg (day 1) increased the concentrations of simvastatin and simvastatin acid during the absorption phase. After clopidogrel 300 mg, the area under the concentration time curve (AUC) of simvastatin from 0 to 2 hours was 156% (P = 0.02) and its AUC(0-12 hours) was 132% (P = 0.08) of that during placebo, whereas the AUC(0-2 hours) and the AUC(0-12 hours) of simvastatin acid were 148% (P = 0.04) and 112% (P = 0.52) of control. Clopidogrel 75 mg (day 3) had no significant effect on the pharmacokinetic variables of simvastatin or simvastatin acid compared with placebo. The effect of clopidogrel seemed independent of the SLCO1B1 c.521T>C genotype. In conclusion, as clopidogrel did not have significant effects on the total exposure to simvastatin or simvastatin acid, clopidogrel does not seem to inhibit OATP1B1 or CYP3A4 to a clinically relevant extent.
Collapse
Affiliation(s)
- Matti K Itkonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
42
|
Hubacek JA, Adamkova V, Hruba P, Ceska R, Vrablik M. Association between polymorphism within the RYR2 receptor and development of statin-associated myalgia/myopathy in the Czech population. Eur J Intern Med 2015; 26:367-8. [PMID: 25753936 DOI: 10.1016/j.ejim.2015.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Jaroslav A Hubacek
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic.
| | - Vera Adamkova
- Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic.
| | - Petra Hruba
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic.
| | - Richard Ceska
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Katerinska 32, Prague 12108, Czech Republic.
| | - Michal Vrablik
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Katerinska 32, Prague 12108, Czech Republic.
| |
Collapse
|
43
|
Wang ZY, Chen M, Zhu LL, Yu LS, Zeng S, Xiang MX, Zhou Q. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther Clin Risk Manag 2015; 11:449-67. [PMID: 25848291 PMCID: PMC4373598 DOI: 10.2147/tcrm.s80437] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Coprescribing of clopidogrel and other drugs is common. Available reviews have addressed the drug–drug interactions (DDIs) when clopidogrel is as an object drug, or focused on combination use of clopidogrel and a special class of drugs. Clinicians may still be ignorant of those DDIs when clopidogrel is a precipitant drug, the factors determining the degree of DDIs, and corresponding risk management. Methods A literature search was performed using PubMed, MEDLINE, Web of Science, and the Cochrane Library to analyze the pharmacokinetic DDIs of clopidogrel and new P2Y12 receptor inhibitors. Results Clopidogrel affects the pharmacokinetics of cerivastatin, repaglinide, ferulic acid, sibutramine, efavirenz, and omeprazole. Low efficacy of clopidogrel is anticipated in the presence of omeprazole, esomeprazole, morphine, grapefruit juice, scutellarin, fluoxetine, azole antifungals, calcium channel blockers, sulfonylureas, and ritonavir. Augmented antiplatelet effects are anticipated when clopidogrel is coprescribed with aspirin, curcumin, cyclosporin, St John’s wort, rifampicin, and angiotensin-converting enzyme inhibitors. The factors determining the degree of DDIs with clopidogrel include genetic status (eg, cytochrome P540 [CYP]2B6*6, CYP2C19 polymorphism, CYP3A5*3, CYP3A4*1G, and CYP1A2-163C.A), species differences, and dose strength. The DDI risk does not exhibit a class effect, eg, the effects of clopidogrel on cerivastatin versus other statins, the effects of proton pump inhibitors on clopidogrel (omeprazole, esomeprazole versus pantoprazole, rabeprazole), the effects of rifampicin on clopidogrel versus ticagrelor and prasugrel, and the effects of calcium channel blockers on clopidogrel (amlodipine versus P-glycoprotein-inhibiting calcium channel blockers). The mechanism of the DDIs with clopidogrel involves modulating CYP enzymes (eg, CYP2B6, CYP2C8, CYP2C19, and CYP3A4), paraoxonase-1, hepatic carboxylesterase 1, P-glycoprotein, and organic anion transporter family member 1B1. Conclusion Effective and safe clopidogrel combination therapy can be achieved by increasing the awareness of potential changes in efficacy and toxicity, rationally selecting alternatives, tailoring drug therapy based on genotype, checking the appropriateness of physician orders, and performing therapeutic monitoring.
Collapse
Affiliation(s)
- Zhi-Yu Wang
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Meng Chen
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ling-Ling Zhu
- VIP Care Ward, Division of Nursing, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lu-Shan Yu
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Su Zeng
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Mei-Xiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Quan Zhou
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
44
|
Li R, Barton HA, Maurer TS. Toward Prospective Prediction of Pharmacokinetics in OATP1B1 Genetic Variant Populations. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e151. [PMID: 25494035 PMCID: PMC4288003 DOI: 10.1038/psp.2014.50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/25/2014] [Indexed: 12/31/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are increasingly being used to provide human pharmacokinetic (PK) predictions for organic anion-transporting polypeptide (OATP) substrates based on in vitro assay data. As a natural extension in the application of these models, in this study, we incorporated in vitro information of three major OATP1B1 genetic variants into a previously reported PBPK model to predict the impact of OATP1B1 polymorphisms on human PK. Using pravastatin and rosuvastatin as examples, we showed that the predicted plasma concentration-time profiles in groups carrying different OATP1B1 genetic variants reasonably matched the clinical observations from multiple studies. This modeling and simulation approach may aid decision making in early pharmaceutical research and development as well as patient-specific dose adjustment in clinical practice.
Collapse
Affiliation(s)
- R Li
- Systems Modeling and Simulation, Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - H A Barton
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide R&D, Groton, Connecticut, USA
| | - T S Maurer
- Systems Modeling and Simulation, Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| |
Collapse
|
45
|
Floyd JS, Bis JC, Brody JA, Heckbert SR, Rice K, Psaty BM. GATM locus does not replicate in rhabdomyolysis study. Nature 2014; 513:E1-3. [PMID: 25230668 DOI: 10.1038/nature13629] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 06/16/2014] [Indexed: 11/09/2022]
Affiliation(s)
- James S Floyd
- 1] Cardiovascular Health Research Unit, University of Washington, 1730 Minor Avenue, Suite 1360, Seattle, Washington 98101, USA [2] Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Box 356420, Seattle, Washington 98195-6420, USA
| | - Joshua C Bis
- 1] Cardiovascular Health Research Unit, University of Washington, 1730 Minor Avenue, Suite 1360, Seattle, Washington 98101, USA [2] Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Box 356420, Seattle, Washington 98195-6420, USA
| | - Jennifer A Brody
- 1] Cardiovascular Health Research Unit, University of Washington, 1730 Minor Avenue, Suite 1360, Seattle, Washington 98101, USA [2] Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Box 356420, Seattle, Washington 98195-6420, USA
| | - Susan R Heckbert
- 1] Cardiovascular Health Research Unit, University of Washington, 1730 Minor Avenue, Suite 1360, Seattle, Washington 98101, USA [2] Department of Epidemiology, University of Washington, 1959 Northeast Pacific Street, Box 357236, Seattle, Washington 98195-7236, USA [3] Group Health Research Institute, Group Health Cooperative, 1730 Minor Avenue, Suite 1600, Seattle, Washington 98101-1448, USA
| | - Kenneth Rice
- 1] Cardiovascular Health Research Unit, University of Washington, 1730 Minor Avenue, Suite 1360, Seattle, Washington 98101, USA [2] Department of Biostatistics, University of Washington, 1959 Northeast Pacific Street, Box 357232, Seattle, Washington 98195-7323, USA
| | - Bruce M Psaty
- 1] Cardiovascular Health Research Unit, University of Washington, 1730 Minor Avenue, Suite 1360, Seattle, Washington 98101, USA [2] Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Box 356420, Seattle, Washington 98195-6420, USA [3] Department of Epidemiology, University of Washington, 1959 Northeast Pacific Street, Box 357236, Seattle, Washington 98195-7236, USA [4] Group Health Research Institute, Group Health Cooperative, 1730 Minor Avenue, Suite 1600, Seattle, Washington 98101-1448, USA
| |
Collapse
|
46
|
To avoid muscle-related adverse events, choose statins carefully in patients receiving antiviral protease inhibitors. DRUGS & THERAPY PERSPECTIVES 2014. [DOI: 10.1007/s40267-014-0122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Glucuronidation converts clopidogrel to a strong time-dependent inhibitor of CYP2C8: a phase II metabolite as a perpetrator of drug-drug interactions. Clin Pharmacol Ther 2014; 96:498-507. [PMID: 24971633 DOI: 10.1038/clpt.2014.141] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022]
Abstract
Cerivastatin and repaglinide are substrates of cytochrome P450 (CYP)2C8, CYP3A4, and organic anion-transporting polypeptide (OATP)1B1. A recent study revealed an increased risk of rhabdomyolysis in patients using cerivastatin with clopidogrel, warranting further studies on clopidogrel interactions. In healthy volunteers, repaglinide area under the concentration-time curve (AUC(0-∞)) was increased 5.1-fold by a 300-mg loading dose of clopidogrel and 3.9-fold by continued administration of 75 mg clopidogrel daily. In vitro, we identified clopidogrel acyl-β-D-glucuronide as a potent time-dependent inhibitor of CYP2C8. A physiologically based pharmacokinetic model indicated that inactivation of CYP2C8 by clopidogrel acyl-β-D-glucuronide leads to uninterrupted 60-85% inhibition of CYP2C8 during daily clopidogrel treatment. Computational modeling resulted in docking of clopidogrel acyl-β-D-glucuronide at the CYP2C8 active site with its thiophene moiety close to heme. The results indicate that clopidogrel is a strong CYP2C8 inhibitor via its acyl-β-D-glucuronide and imply that glucuronide metabolites should be considered potential inhibitors of CYP enzymes.
Collapse
|
48
|
Rajput TA, Naveed AK, Khan S, Farooqi ZUR. Frequencies of two functionally significant SNPs and their haplotypes of organic anion transporting polypeptide 1B1 SLCO1B1 gene in six ethnic groups of Pakistani population. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:441-447. [PMID: 25140206 PMCID: PMC4137940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVES Organic anion transporter polypeptide 1B1 (OATP1B1) encoded by solute carrier organic transporter 1B1 (SLCO1B1) gene; a transporter involved in the uptake of drugs and endogenous compounds is present in hepatocyte sinusoidal membrane. Aim of this study was to investigate the frequencies of functionally significant SNPs (388A>G and 521T>C) and their haplotypes in 6 ethnic groups of Pakistani population through the development of rapid and efficient Tetra amplification refractory mutation system (T. ARMS) genotyping assay. MATERIALS AND METHODS Frequencies of alleles, genotype, and haplotypes of two functionally significant Single nucleotide polymorphism in 180 healthy Pakistani subjects and distributions in six ethnic groups by using a single step T. ARMS genotyping assay. RESULTS The allelic frequency for 388A>G SNP was 50% in total Pakistani population with Single nucleotide polymorphism distributions of 9.7%, 15.1%, 19.4%, 16.1%, 18.3%, and 21.5% in Punjabi, Sindhi, Balouchi, Pathan, Kashmiri and Hazara/Baltistan groups respectively; and for 521T>C SNP it was 23.9% in total Pakistani population with distributions of 11.1%, 8.9%, 15.6%, 11.1%, 31.1% and 22.2% in Punjabi, Sindhi, Balouchi, Pathan, Kashmiri, and Hazara/Baltistan groups. Both functionally significant SNPs occurred in four major haplotypes with a frequency of 35.5% for 388A/521T (*1A), 40.5% for 388G/521T (*1B), 14.4% for 388A/521C (*5), and 9.4% for 388G/521C (*15) with varying distributions among six ethnic groups. CONCLUSION The 388A>G and 521T>C genotypes and corresponding haplotypes are present at varying frequencies in various ethnic groups of Pakistani population. Pharmacokinetic and pharmacodynamic profiling is needed to assess and characterize the effects of these haplotypes in our population.
Collapse
Affiliation(s)
- Tausif Ahmed Rajput
- Department of Biochemistry and Molecular Biology, Centre for Research in Experimental and Applied Medicine (CREAM), Army Medical College, National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Abdul Khaliq Naveed
- Department of Biochemistry and Molecular Biology, Centre for Research in Experimental and Applied Medicine (CREAM), Army Medical College, National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Shakir Khan
- Department of Biochemistry and Molecular Biology, Centre for Research in Experimental and Applied Medicine (CREAM), Army Medical College, National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Zia-Ur-Rehman Farooqi
- Department of Biochemistry and Molecular Biology, Centre for Research in Experimental and Applied Medicine (CREAM), Army Medical College, National University of Sciences & Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
49
|
Markova SM, De Marco T, Bendjilali N, Kobashigawa EA, Mefford J, Sodhi J, Le H, Zhang C, Halladay J, Rettie AE, Khojasteh C, McGlothlin D, Wu AHB, Hsueh WC, Witte JS, Schwartz JB, Kroetz DL. Association of CYP2C9*2 with bosentan-induced liver injury. Clin Pharmacol Ther 2013; 94:678-86. [PMID: 23863877 DOI: 10.1038/clpt.2013.143] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
Bosentan (Tracleer) is an endothelin receptor antagonist prescribed for the treatment of pulmonary arterial hypertension (PAH). Its use is limited by drug-induced liver injury (DILI). To identify genetic markers of DILI, association analyses were performed on 56 Caucasian PAH patients receiving bosentan. Twelve functional polymorphisms in five genes (ABCB11, ABCC2, CYP2C9, SLCO1B1, and SLCO1B3) implicated in bosentan pharmacokinetics were tested for associations with alanine aminotransferase (ALT), aspartate aminotransferase (AST), and DILI. After adjusting for body mass index, CYP2C9*2 was the only polymorphism associated with ALT, AST, and DILI (β = 2.16, P = 0.024; β = 1.92, P = 0.016; odds ratio 95% CI = 2.29-∞, P = 0.003, respectively). Bosentan metabolism by CYP2C9*2 in vitro was significantly reduced compared with CYP2C9*1 and was comparable to that by CYP2C9*3. These results suggest that CYP2C9*2 is a potential genetic marker for prediction of bosentan-induced liver injury and warrants investigation for the optimization of bosentan treatment.
Collapse
Affiliation(s)
- S M Markova
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|