1
|
El Desoky ES, Taha AF, Mousa HS, Ibrahim A, Saleh MA, Abdelrady MA, Hareedy MS. Value of therapeutic drug monitoring of endoxifen in Egyptian premenopausal patients with breast cancer given tamoxifen adjuvant therapy: A pilot study. J Oncol Pharm Pract 2023; 29:1673-1686. [PMID: 36567618 DOI: 10.1177/10781552221146531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The complex metabolic profile of tamoxifen anticancer drug and polymorphism in its metabolizing enzymes particularly CYP2D6 contribute to the high-observed inter-individual variability in its main active metabolite endoxifen. Therapeutic drug monitoring of endoxifen may play a key role in optimizing tamoxifen therapy, and control of both adverse effects and cancer recurrence. This pilot study aims to assess the clinical benefits of applying endoxifen measurement during tamoxifen therapy in patients with breast cancer. METHODS Adult premenopausal breast cancer patients ≥ 18 years who received tamoxifen at a fixed dose of 20 mg daily were included. The primary endpoint was to identify the inter-subject variability in serum concentration of the drug and its metabolites especially endoxifen, through fixation of the tamoxifen dose. The secondary endpoint was to check the correlation between endoxifen metabolite concentration and the development of tamoxifen's adverse effects and cancer recurrence. RESULTS Sixty patients were included in the study with a mean age of 38.4 ± 0.6 years (range: 26-50). The mean concentration of tamoxifen and endoxifen was 181 ± 9.6 ng/mL and 31.49 ng/mL, respectively. The inter-individual variability in concentrations for the drug and its active metabolite as estimated by the coefficient of variation percentage was in 41% and 31%, respectively. Cancer recurrence was observed in a group of patients (n = 16) with an average endoxifen level of 24.48 ng/mL. Another group of patients (n = 25) developed different tamoxifen adverse effects including hot flashes, vaginal bleeding, endometrial thickness, and ovarian cysts with the average endoxifen level of 38.61 ng/mL. The rest of the patients (n = 19) who responded smoothly to the drug with no complications had an average endoxifen level of 31.37 ng/mL. Analysis of variance test showed a significant difference in endoxifen levels between the three groups (p = 0.002). CONCLUSION The measurement of the endoxifen active metabolite of tamoxifen in breast cancer patients can help dose optimization in light of the observed wide inter-individual variability in drug fixed-dose related concentration of the metabolite. Monitoring of serum concentration of endoxifen can help to reveal, reduce and control tamoxifen's adverse effects and cancer recurrence.
Collapse
Affiliation(s)
- Ehab S El Desoky
- Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Amira F Taha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Egypt
| | - Heba Salah Mousa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Abeer Ibrahim
- Department of Medical Oncology and Hematological Malignancy, South Egypt Cancer Institute, Assiut University, Egypt
| | - Medhat A Saleh
- Department of Public Health and Community Medicine, Faculty of Medicine, Assiut University, Egypt
| | | | | |
Collapse
|
2
|
Souwer ETD, Sanchez-Spitman A, Moes DJAR, Gelderblom H, Swen JJ, Portielje JEA, Guchelaar HJ, van Gelder T. Tamoxifen pharmacokinetics and pharmacodynamics in older patients with non-metastatic breast cancer. Breast Cancer Res Treat 2023; 199:471-478. [PMID: 37067610 PMCID: PMC10175413 DOI: 10.1007/s10549-023-06925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND We aimed to study the pharmacokinetics and -dynamics of tamoxifen in older women with non-metastatic breast cancer. METHODS Data for this analysis were derived from the CYPTAM study (NTR1509) database. Patients were stratified by age (age groups < 65 and 65 and older). Steady-state trough concentrations were measured of tamoxifen, N-desmethyltamoxifen, 4-hydroxy-tamoxifen, and endoxifen. CYP2D6 and CYP3A4 phenotypes were assessed for all patients by genotyping. Multiple linear regression models were used to analyze tamoxifen and endoxifen variability. Outcome data included recurrence-free survival at time of tamoxifen discontinuation (RFSt) and overall survival (OS). RESULTS 668 patients were included, 141 (21%) were 65 and older. Demographics and treatment duration were similar across age groups. Older patients had significantly higher concentrations of tamoxifen 129.4 ng/ml (SD 53.7) versus 112.2 ng/ml (SD 42.0) and endoxifen 12.1 ng/ml (SD 6.6) versus 10.7 ng/ml (SD 5.7, p all < 0.05), independently of CYP2D6 and CYP3A4 gene polymorphisms. Age independently explained 5% of the variability of tamoxifen (b = 0.95, p < 0.001, R2 = 0.051) and 0.1% of the variability in endoxifen concentrations (b = 0.45, p = 0.12, R2 = 0.007). Older patients had worse RFSt (5.8 versus 7.3 years, p = 0.01) and worse OS (7.8 years versus 8.7 years, p = 0.01). This was not related to differences in endoxifen concentration (HR 1.0, 95% CI 0.96-1.04, p = 0.84) or CYP polymorphisms. CONCLUSION Serum concentrations of tamoxifen and its demethylated metabolites are higher in older patients, independent of CYP2D6 or CYP3A4 gene polymorphisms. A higher bioavailability of tamoxifen in older patients may explain the observed differences. However, clinical relevance of these findings is limited and should not lead to a different tamoxifen dose in older patients.
Collapse
Affiliation(s)
- E T D Souwer
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.
| | - A Sanchez-Spitman
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J E A Portielje
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - H J Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - T van Gelder
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
van der Lee M, Allard WG, Vossen RHAM, Baak-Pablo RF, Menafra R, Deiman BALM, Deenen MJ, Neven P, Johansson I, Gastaldello S, Ingelman-Sundberg M, Guchelaar HJ, Swen JJ, Anvar SY. Toward predicting CYP2D6-mediated variable drug response from CYP2D6 gene sequencing data. Sci Transl Med 2021; 13:13/603/eabf3637. [PMID: 34290055 DOI: 10.1126/scitranslmed.abf3637] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Pharmacogenomics is a key component of personalized medicine that promises safer and more effective drug treatment by individualizing drug choice and dose based on genetic profiles. In clinical practice, genetic biomarkers are used to categorize patients into *-alleles to predict CYP450 enzyme activity and adjust drug dosages accordingly. However, this approach leaves a large part of variability in drug response unexplained. Here, we present a proof-of-concept approach that uses continuous-scale (instead of categorical) assignments to predict enzyme activity. We used full CYP2D6 gene sequences obtained with long-read amplicon-based sequencing and cytochrome P450 (CYP) 2D6-mediated tamoxifen metabolism data from a prospective study of 561 patients with breast cancer to train a neural network. The model explained 79% of interindividual variability in CYP2D6 activity compared to 54% with the conventional *-allele approach, assigned enzyme activities to known alleles with previously reported effects, and predicted the activity of previously uncharacterized combinations of variants. The results were replicated in an independent cohort of tamoxifen-treated patients (model R 2 adjusted = 0.66 versus *-allele R 2 adjusted = 0.35) and a cohort of patients treated with the CYP2D6 substrate venlafaxine (model R 2 adjusted = 0.64 versus *-allele R 2 adjusted = 0.55). Human embryonic kidney cells were used to confirm the effect of five genetic variants on metabolism of the CYP2D6 substrate bufuralol in vitro. These results demonstrate the advantage of a continuous scale and a completely phased genotype for prediction of CYP2D6 enzyme activity and could potentially enable more accurate prediction of individual drug response.
Collapse
Affiliation(s)
- Maaike van der Lee
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - William G Allard
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Rolf H A M Vossen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Renée F Baak-Pablo
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Roberta Menafra
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Birgit A L M Deiman
- Clinical Laboratory, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Department of Clinical Pharmacy, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, Netherlands
| | | | - Inger Johansson
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands. .,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - Seyed Yahya Anvar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands. .,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| |
Collapse
|
4
|
Wanitpongpun C, Honma Y, Okada T, Suzuki R, Takeshi U, Suzumiya J. Tamoxifen enhances romidepsin-induced apoptosis in T-cell malignant cells via activation of FOXO1 signaling pathway. Leuk Lymphoma 2021; 62:1585-1596. [PMID: 33508992 DOI: 10.1080/10428194.2021.1876857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although romidepsin as monotherapy appears to be useful for treating T-cell lymphoma, combined chemotherapy with other therapeutic agents is required for improvement of the treatment outcome. To establish safer and more effective regimens, systematic screening was conducted to identify suitable drugs to be used in combination with romidepsin for T-cell malignancies, and the underlying molecular mechanisms were examined. The most effective agent was tamoxifen. The combination of romidepsin and tamoxifen had a significant synergistic effect in inducing apoptosis. The growth-inhibitory effects of the combined treatment were reversed by α-tocopherol. FOXO1 expression was greatly upregulated in MOLT-4 cells treated with romidepsin plus tamoxifen. Knockdown of FOXO1 expression by siRNA significantly reduced the cell death induced by romidepsin plus tamoxifen. The combination of romidepsin and tamoxifen might be considered for the treatment of T-cell lymphoma patients.
Collapse
Affiliation(s)
| | - Yoshio Honma
- Department of Oncology/Hematology, Shimane University, Izumo, Japan.,Faculty of Medicine, Department of Biochemistry, Shimane University, Izumo, Japan
| | - Takahiro Okada
- Department of Oncology/Hematology, Shimane University, Izumo, Japan
| | - Ritsuro Suzuki
- Department of Oncology/Hematology, Shimane University, Izumo, Japan
| | - Urano Takeshi
- Faculty of Medicine, Department of Biochemistry, Shimane University, Izumo, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, Shimane University, Izumo, Japan
| |
Collapse
|
5
|
Slanař O, Hronová K, Bartošová O, Šíma M. Recent advances in the personalized treatment of estrogen receptor-positive breast cancer with tamoxifen: a focus on pharmacogenomics. Expert Opin Drug Metab Toxicol 2020; 17:307-321. [PMID: 33320718 DOI: 10.1080/17425255.2021.1865310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Tamoxifen is still an important drug in hormone-dependent breast cancer therapy. Personalization of its clinical use beyond hormone receptor positivity could improve the substantial variability of the treatment response.Areas covered: The overview of the current evidence for the treatment personalization using therapeutic drug monitoring, or using genetic biomarkers including CYP2D6 is provided. Although many studies focused on the PK aspects or the impact of CYP2D6 variability the translation into clinical routine is not clearly defined due to the inconsistent clinical outcome data.Expert opinion: We believe that at least the main candidate factors, i.e. CYP2D6 polymorphism, CYP2D6 inhibition, endoxifen serum levels may become important predictors of clinical relevance for tamoxifen treatment personalization in the future. To achieve this aim, however, further research should take into consideration more precise characterization of the disease, epigenetic factors and also utilize an appropriately powered multifactorial approach instead of a single gene evaluating studies.
Collapse
Affiliation(s)
- Ondřej Slanař
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Karolína Hronová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Olga Bartošová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
6
|
Jorge-Aarón RM, Rodrigo RC, Esther MPR. Endoxifen levels and metabolic phenotype-associated factors in Mexican Mestizo patients under tamoxifen treatment. Pharmacogenomics 2020; 21:929-943. [PMID: 32808577 DOI: 10.2217/pgs-2020-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate plasma endoxifen levels and metabolic phenotype-associated factors in Mexican Mestizo patients under tamoxifen treatment. Patients & methods: A total of 138 breast cancer patients under tamoxifen treatment were cross-sectionally evaluated and side effects (SE) were recorded. CYP2D6 genetic phenotypes (GP) and metabolic phenotypes (MP) were assessed (metabolic poor [mPM], intermediate [mIM], normal [mNM], and ultrarapid [mUM] metabolizer). Associations were tested in uni-multivariate models for endoxifen >5.9 ng/ml and for mNM + mUM MP. Results: The main SE was hot flashes (62%). Distribution of the CYP2D6 MP was 4.3% mPM; 14.5% mIM; 75.4% mNM; and 5.8% mUM. Endoxifen >5.9 ng/ml was partially associated with SE (p = 0.06); the mNM + mUM MP was associated with treatment time (p = 0.03). Conclusion: The endoxifen-associated factors in Mexican Mestizo patients remain inconclusive, although treatment time was associated with MP.
Collapse
Affiliation(s)
- Rangel-Méndez Jorge-Aarón
- Unidad de Investigación Biomédica, Unidad Médica de Alta Especialidad, Hospital de Especialidades del Centro Médico Nacional "Ignacio García Téllez", Instituto Mexicano del Seguro Social, Calle 41 No. 439, Col. Industrial, Mérida, Yucatán, 97150, México
| | - Rubi-Castellanos Rodrigo
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" Calle 96 S/N, Avenida Jacinto Canek y calle 47, Paseo de las Fuentes, Merida, Yucatan, 97225, Mexico
| | - Moo-Puc Rosa Esther
- Unidad de Investigación Biomédica, Unidad Médica de Alta Especialidad, Hospital de Especialidades del Centro Médico Nacional "Ignacio García Téllez", Instituto Mexicano del Seguro Social, Calle 41 No. 439, Col. Industrial, Mérida, Yucatán, 97150, México
| |
Collapse
|
7
|
Sanchez-Spitman AB, Moes DJAR, Swen JJ, Dezentjé VO, Lambrechts D, Neven P, Gelderblom H, Guchelaar HJ. Exposure-response analysis of endoxifen serum concentrations in early-breast cancer. Cancer Chemother Pharmacol 2020; 85:1141-1152. [PMID: 32468081 PMCID: PMC7305085 DOI: 10.1007/s00280-020-04089-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Purpose
Tamoxifen is part of endocrine therapy in breast cancer treatment. Studies have indicated the use of endoxifen concentrations, tamoxifen active metabolite, to guide tamoxifen efficacy. Three endoxifen thresholds have been suggested (5.9 ng/ml, 5.2 ng/ml and 3.3 ng/ml) for therapeutic drug monitoring (TDM). Our aim was to validate these thresholds and to examine endoxifen exposure with clinical outcome in early-breast cancer patients using tamoxifen. Methods Data from 667 patients from the CYPTAM study (NTR1509) were available. Patients were stratified (above or below), according to the endoxifen threshold values for tamoxifen efficacy and tested by Cox regression. Logistic regressions to estimate the probability of relapse and tamoxifen discontinuation were performed. Results None of the thresholds showed a statistically significant difference in relapse-free survival: 5.2 ng/ml threshold: hazard ratio (HR): 2.545, 95% confidence interval (CI) 0.912–7.096, p value: 0.074; 3.3 ng/ml threshold: HR: 0.728; 95% CI 0.421–1.258, p value: 0.255. Logistic regression did not show a statistically significant association between the risk of relapse (odds ratio (OR): 0.971 (95% CI 0.923–1.021, p value: 0.248) and the risk for tamoxifen discontinuation (OR: 1.006 95% CI 0.961–1.053, p value: 0.798) with endoxifen concentrations. Conclusion Our findings do not confirm the endoxifen threshold values for TDM nor does it allow definition of a novel threshold. These findings indicate a limited value of TDM to guide tamoxifen efficacy.
Collapse
Affiliation(s)
- Anabel Beatriz Sanchez-Spitman
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk-Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent O Dezentjé
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Medical Oncology, University Hospital Leuven, Leuven, Belgium
| | - Hans Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
8
|
Yenny, Panigoro SS, Purwanto DJ, Hidayat A, Louisa M, Andalusia R, Setiabudy R. Association of CYP2D6*10 (c. 100 C>T) Genotype with Z-END Concentration in Patients with Breast Cancer Receiving Tamoxifen Therapy in Indonesian Population. Endocr Metab Immune Disord Drug Targets 2019; 19:1198-1206. [DOI: 10.2174/1871530319666190306094617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 11/22/2022]
Abstract
Background:
Tamoxifen (TAM) is a frequently used hormonal prodrug for patients with
breast cancer that needs to be activated by cytochrome P450 2D6 (CYP2D6) into Zusammen-endoxifen
(Z-END).
Objective:
The purpose of the study was to determine the association between CYP2D6*10
(c.100C>T) genotype and attainment of the plasma steady-state Z-END minimal threshold concentration
(MTC) in Indonesian women with breast cancer.
Methods:
A cross-sectional study was performed in 125 ambulatory patients with breast cancer
consuming TAM at 20 mg/day for at least 4 months. The frequency distribution of CYP2D6*10
(c.100C>T) genotypes (C/C: wild type; C/T: heterozygous mutant; T/T: homozygous mutant) was
detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP),
the results of which were subsequently confirmed by sequencing. The genotypes were categorized
into plasma Z- END concentrations of <5.9 ng/mL and ≥5.9 ng/mL, which were measured using
ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS).
Results:
Percentages of C/C, CT, and T/T genotypes were 22.4%, 29.6%, and 48.8%, respectively.
Median (25-75%) Z-END concentrations in C/C, C/T, and T/T genotypes were 9.58 (0.7-6.0), 9.86
(0.7-26.6), and 3.76 (0.9-26.6) ng/mL, respectively. Statistical analysis showed a significant difference
in median Z-END concentration between patients with T/T genotype and those with C/C or C/T
genotypes (p<0.001). There was a significant association between CYP2D6*10 (c.100C>T) genotypes
and attainment of plasma steady-state Z-END MTC (p<0.001).
Conclusion:
There was a significant association between CYP2D6*10 (c.100C>T) and attainment of
plasma steady-state Z-END MTC in Indonesian breast cancer patients receiving TAM at a dose of 20
mg/day.
Collapse
Affiliation(s)
- Yenny
- Doctoral Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sonar S. Panigoro
- Department of Surgery, Surgical Oncology Division, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Denni J. Purwanto
- Surgical Oncology Department, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Adi Hidayat
- Department of Community Medicine, Faculty of Medicine, Trisakti University, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Rizka Andalusia
- Department of Research and Development, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Rianto Setiabudy
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
9
|
Ahmed JH, Makonnen E, Fotoohi A, Aseffa A, Howe R, Aklillu E. CYP2D6 Genotype Predicts Plasma Concentrations of Tamoxifen Metabolites in Ethiopian Breast Cancer Patients. Cancers (Basel) 2019; 11:cancers11091353. [PMID: 31547390 PMCID: PMC6770728 DOI: 10.3390/cancers11091353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Tamoxifen displays wide inter-individual variability (IIV) in its pharmacokinetics and treatment outcome. Data on tamoxifen pharmacokinetics and pharmacogenetics from black African breast cancer patient populations is lacking. We investigated the pharmacokinetic and pharmacogenetic profile of tamoxifen and its major active metabolite, endoxifen, in Ethiopian breast cancer patients. A total of 81 female breast cancer patients on adjuvant tamoxifen therapy were enrolled. Tamoxifen (Tam) and its major metabolites, N-desmethyltamoxifen (NDM), 4-hydroxy-tamoxifen (4-HT), and (Z)-endoxifen (E) were quantified using LC-MS/MS. Genotyping for CYP2D6, CYP2C9, CYP2C19, CYP3A5, POR, and ABCB1 and UGT2B15 and copy number variation for CYP2D6 were done. The proportion of patients with low endoxifen level (<5.9 ng/mL) was 35.8% (median concentration 7.94 ng/mL). The allele frequency of CYP2D6 gene deletion (*5) and duplication (*1×N or *2×N) was 4.3% and 14.8%, respectively. Twenty-six percent of the patients carried duplicated or multiplicated CYP2D6 gene. An increase in CYP2D6 activity score was associated with increased endoxifen concentration and MRE/NDM (p < 0.001). The IIV in endoxifen concentration and MRE/NDM was 74.6% and 59%, respectively. CYP2D6 diplotype explained 28.2% and 44% of the variability in absolute endoxifen concentration and MRE/NDM, respectively. The explanatory power of CYP2D6 diplotype was improved among ABCB1c.4036G carriers (43% and 65.2%, respectively for endoxifen concentration and MRE/NDM) compared to A/A genotype. CYP2C9, CYP2C19, and CYP3A5 genotypes had no significant influence on endoxifen concentration or MRE/NDM. In conclusion, we report a high rate of low endoxifen level as well as large IIV in tamoxifen and its metabolite concentrations. CYP2D6 is significant predictor of plasma endoxifen level in a gene-dose dependent manner.
Collapse
Affiliation(s)
- Jemal Hussien Ahmed
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia.
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden.
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia.
- Center for Innovative Drug Development and Therapeutic Trials, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia.
| | - Alan Fotoohi
- Division of Clinical Pharmacology, Department of Medicine, Karolinska Institutet, Solna Stockholm 171 76, Sweden.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia.
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia.
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden.
| |
Collapse
|
10
|
New UPLC-MS/MS assay for the determination of tamoxifen and its metabolites in human plasma, application to patients. Future Sci OA 2019; 5:FSO374. [PMID: 31245038 PMCID: PMC6554689 DOI: 10.2144/fsoa-2018-0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/11/2019] [Indexed: 11/23/2022] Open
Abstract
AIM A rapid UPLC-MS/MS method for the determination of tamoxifen (TAM), N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen in human plasma was validated, after a simple protein precipitation. MATERIALS AND METHODS The analysis was achieved on a C18 analytical column, using a gradient elution with a mobile phase of water and acetonitrile for 4.5 min. RESULTS The validated method demonstrated good linearity between 1 and 500 ng/ml for TAM and N-desmethyltamoxifen; between 0.2 and 100 ng/ml for endoxifen and between 0.1 and 50 ng/ml for 4-hydroxytamoxifen. The method also provided satisfactory results in terms of within day and between day imprecisions and accuracy, and also in terms of time stability and specificity. CONCLUSION The method is applied routinely for TAM monitoring from patients undergoing therapy.
Collapse
|
11
|
New UPLC–MS/MS assay for the determination of tamoxifen and its metabolites in human plasma, application to patients. Future Sci OA 2019. [DOI: 10.4155/fsoa-2018-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Woo HI, Lee SK, Kim J, Kim SW, Yu J, Bae SY, Lee JE, Nam SJ, Lee SY. Variations in plasma concentrations of tamoxifen metabolites and the effects of genetic polymorphisms on tamoxifen metabolism in Korean patients with breast cancer. Oncotarget 2017; 8:100296-100311. [PMID: 29245979 PMCID: PMC5725021 DOI: 10.18632/oncotarget.22220] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Inter-individual variation in tamoxifen metabolism in breast cancer patients is caused by various genetic and clinical factors. We measured the plasma concentrations of tamoxifen and its metabolites and investigated genetic polymorphisms influencing those concentrations. We measured the concentrations of tamoxifen, endoxifen, N-desmethyltamoxifen (NDM), and 4-hydroxytamoxifen (4-OH tamoxifen) in 550 plasma specimens from 281 breast cancer patients treated with tamoxifen. Duplicate or triplicate specimens were obtained from 179 patients at 3-month intervals. In 80 patients, genotyping for tamoxifen metabolizing enzymes was performed using the DMET Plus array and long-range PCR. Plasma concentrations of tamoxifen and its metabolites showed wide variations among patients. The following genetic polymorphisms were associated with the plasma concentrations when body mass index and tamoxifen concentrations were considered as co-variables: CYP1A2 -2467delT, CYP2B6 genotype, CYP2D6 activity score (AS), and FMO3 441C>T. CYP2D6 AS and three variants in the SULT1E1 gene showed correlation with ratios of tamoxifen metabolites. CYP2D6 AS was the only variable that showed associations with both metabolite concentration and ratio: endoxifen (P < 0.001), NDM (P < 0.001), endoxifen/NDM (P < 0.001), NDM/tamoxifen (P < 0.001), and 4-OH tamoxifen/tamoxifen (P = 0.005). Serial measurements of 448 plasma concentrations in 179 patients at 3-month intervals showed wide intra-individual variation. Our study showed that genetic polymorphisms can in part determine the baseline concentrations of tamoxifen and its metabolites. However, marked intra-individual variations during follow-up monitoring were observed, and this could not be explained by genotype. Therefore, serial measurements of tamoxifen and its metabolites would be helpful in monitoring in vivo tamoxifen metabolic status.
Collapse
Affiliation(s)
- Hye In Woo
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Se Kyung Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyoung Kim
- Department of Surgery, Jeju National University School of Medicine, Jeju National University Hospital, Jeju, Korea
| | - Seok Won Kim
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jonghan Yu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Youn Bae
- Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Nam
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Youn Lee
- Department of Clinical Pharmacology & Therapeutics, Samsung Medical Center, Seoul, Korea
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|