1
|
Ren Y, Anderson AT, Meyer G, Lauber KM, Gallucci JC, Douglas Kinghorn A. Digoxin and its Na +/K +-ATPase-targeted actions on cardiovascular diseases and cancer. Bioorg Med Chem 2024; 114:117939. [PMID: 39396465 PMCID: PMC11527570 DOI: 10.1016/j.bmc.2024.117939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Na+/K+-ATPase (NKA) is a plasma membrane ion-transporting protein involved in the generation and maintenance of Na+ and K+ gradients across the cell membrane, which can produce a driving force for the secondary transport of metabolic substrates. NKA also regulates intracellular calcium that is responsible for modulating numerous cellular processes, while it interacts with many other proteins and functions as a signal transducer, with several signaling pathways being involved. Thus, NKA has become an important target for the treatment of human diseases. Cardiac glycosides are well-known NKA inhibitors, of which (+)-digoxin or digoxin has been long used for the treatment of congestive heart failure. Also, digoxin has exhibited potential antitumor activity, by targeting directly HIF-1α, NKA, and NF-κB. Thus, the function of NKA in human cardiovascular diseases and cancer and the therapeutic effects of digoxin on these diseases are summarized in the present review, with the correlations among digoxin, NKA, cardiovascular diseases, and cancer being discussed. Presented herein are also the antitumor potential of monosaccharide cardiac glycoside analogues of digoxin, including (-)-cryptanoside A, (-)-oleandrin, (-)-ouabain, and (+)-strebloside. It is hoped that this contribution will provide some helpful information for the design and discovery of new cardiac glycoside-type therapeutic agents for the treatment of cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Andrew T Anderson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Gunnar Meyer
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Kaitlyn M Lauber
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Judith C Gallucci
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
2
|
Weidemann H, Feger D, Ehlert JE, Menger MM, Krempien RC. Markedly divergent effects of Ouabain on a Temozolomide-resistant (T98G) vs. a Temozolomide-sensitive (LN229) Glioblastoma cell line. Discov Oncol 2023; 14:27. [PMID: 36840822 PMCID: PMC9968366 DOI: 10.1007/s12672-023-00633-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis. GMB are highly recurrent mainly because of radio- and chemoresistance. Radiotherapy with Temozolomide (TMZ) is until today the golden standard adjuvant therapy, however, the optimal treatment of recurrent glioblastoma remains controversial. Ouabain belongs to the Cardiotonic Steroids (CTS) the natural ligands of the Na/K-ATPase (NKA). It is established that the NKA represents a signal transducer with either stimulating or inhibiting cell growth, apoptosis, migration and angiogenesis. Over the last decade evidence grew that CTS have anti-tumor properties especially in GBM. AIM Proceeding from recent studies we wanted to further demonstrate a divergent effect of Ouabain on a TMZ-resistant (T98G) as compared to a TMZ-sensitive (LN229) GBM cell line. METHODS We analyzed the effect of Ouabain on cell migration and plasma cell membrane potential (PCMP) in the LN229 and T98G GBM cell line as well as underlying mechanisms (Bcl-2 and p-Akt/pan-Akt expression). Moreover, we analyzed the anti-angiogenic effect of Ouabain on human umbilical vein endothelial cells (HUVECs). RESULTS T98G cells showed a significant inhibition of cell migration and a significant depolarization of the PCMP at similar Ouabain concentrations (IC50 = 1.67 × 10-7 M) resp. (IC50 = 2.72 × 10-7 M) with a strong inverse correlation (R2 = 0.95). In contrast, LN229 cells did not respond to Ouabain in these assays at all. Similarly, only T98G but not LN229 cells revealed Bcl-2 down-regulation at nanomolar Ouabain concentrations. This unique response to Ouabain is associated with a down-regulation of pan-Akt in T98G cells 24 h after Ouabain (1.0 × 10-6 M) treatment. For the first time, the anti-angiogenic effect of Ouabain on HUVEC cells (IC50 = 5.49 × 10-8 M) was demonstrated which correlated strongly with the anti-migratory effect (R2 = 0.85). CONCLUSION The TMZ-resistant T98G cell line as compared to the TMZ-sensitive LN229 cell line shows a high sensitivity towards Ouabain. We consider it as a promising new compound especially in recurrent GBM to overcome the resistance to TMZ and irradiation.
Collapse
Affiliation(s)
- Heidrun Weidemann
- Clinic for Radiotherapy, HELIOS Hospital Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Daniel Feger
- Reaction Biology Europe GmbH, Engesserstr.4, 79108 Freiburg, Germany
| | - Jan E. Ehlert
- Reaction Biology Europe GmbH, Engesserstr.4, 79108 Freiburg, Germany
| | - Marcus M. Menger
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg13, 14476 Potsdam, Germany
| | - Robert C. Krempien
- Clinic for Radiotherapy, HELIOS Hospital Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| |
Collapse
|
3
|
Ouabain Promotes Gap Junctional Intercellular Communication in Cancer Cells. Int J Mol Sci 2020; 22:ijms22010358. [PMID: 33396341 PMCID: PMC7801950 DOI: 10.3390/ijms22010358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Gap junctions are molecular structures that allow communication between neighboring cells. It has been shown that gap junctional intercellular communication (GJIC) is notoriously reduced in cancer cells compared to their normal counterparts. Ouabain, a plant derived substance, widely known for its therapeutic properties on the heart, has been shown to play a role in several types of cancer, although its mechanism of action is not yet fully understood. Since we have previously shown that ouabain enhances GJIC in epithelial cells (MDCK), here we probed whether ouabain affects GJIC in a variety of cancer cell lines, including cervico-uterine (CasKi, SiHa and Hela), breast (MDA-MB-321 and MCF7), lung (A549), colon (SW480) and pancreas (HPAF-II). For this purpose, we conducted dye transfer assays to measure and compare GJIC in monolayers of cells with and without treatment with ouabain (0.1, 1, 10, 50 and 500 nM). We found that ouabain induces a statistically significant enhancement of GJIC in all of these cancer cell lines, albeit with distinct sensitivity. Additionally, we show that synthesis of new nucleotides or protein subunits is not required, and that Csrc, ErK1/2 and ROCK-Rho mediate the signaling mechanisms. These results may contribute to explaining how ouabain influences cancer.
Collapse
|
4
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
5
|
Amara AAAF. An overview of the molecular and cellular interactions of some bioactive compounds. BIOTECHNOLOGY OF BIOACTIVE COMPOUNDS 2015:525-554. [DOI: 10.1002/9781118733103.ch21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Joy ME, Vollmer LL, Hulkower K, Stern AM, Peterson CK, Boltz RC“D, Roy P, Vogt A. A high-content, multiplexed screen in human breast cancer cells identifies profilin-1 inducers with anti-migratory activities. PLoS One 2014; 9:e88350. [PMID: 24520372 PMCID: PMC3919756 DOI: 10.1371/journal.pone.0088350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/12/2014] [Indexed: 01/17/2023] Open
Abstract
Profilin-1 (Pfn-1) is a ubiquitously expressed actin-binding protein that is essential for normal cell proliferation and migration. In breast cancer and several other adenocarcinomas, Pfn-1 expression is downregulated when compared to normal tissues. Previous studies from our laboratory have shown that genetically modulating Pfn-1 expression significantly impacts proliferation, migration, and invasion of breast cancer cells in vitro, and mammary tumor growth, dissemination, and metastatic colonization in vivo. Therefore, small molecules that can modulate Pfn-1 expression could have therapeutic potential in the treatment of metastatic breast cancer. The overall goal of this study was to perform a multiplexed phenotypic screen to identify compounds that inhibit cell motility through upregulation of Pfn-1. Screening of a test cassette of 1280 compounds with known biological activities on an Oris™ Pro 384 cell migration platform identified several agents that increased Pfn-1 expression greater than two-fold over vehicle controls and exerted anti-migratory effects in the absence of overt cytotoxicity in MDA-MB-231 human breast cancer cells. Concentration-response confirmation and orthogonal follow-up assays identified two bona fide inducers of Pfn-1, purvalanol and tyrphostin A9, that confirmed in single-cell motility assays and Western blot analyses. SiRNA-mediated knockdown of Pfn-1 abrogated the inhibitory effect of tyrphostin A9 on cell migration, suggesting Pfn-1 is mechanistically linked to tyrphostin A9′s anti-migratory activity. The data illustrate the utility of the high-content cell motility assay to discover novel targeted anti-migratory agents by integrating functional phenotypic analyses with target-specific readouts in a single assay platform.
Collapse
Affiliation(s)
- Marion E. Joy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Laura L. Vollmer
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, United States of America
| | - Keren Hulkower
- Platypus Technologies, LLC, Madison, Wisconsin, United States of America
| | - Andrew M. Stern
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, United States of America
| | - Cameron K. Peterson
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, United States of America
| | - R. C. “Dutch” Boltz
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, United States of America
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee Women's Research Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (AV); (PR)
| | - Andreas Vogt
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (AV); (PR)
| |
Collapse
|
7
|
Cao J, He L, Lin G, Hu C, Dong R, Zhang J, Zhu H, Hu Y, Wagner CR, He Q, Yang B. Cap-dependent translation initiation factor, eIF4E, is the target for Ouabain-mediated inhibition of HIF-1α. Biochem Pharmacol 2013; 89:20-30. [PMID: 24345331 DOI: 10.1016/j.bcp.2013.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 12/29/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor that mediates the adaptation of tumor cells and tissues to the hypoxic microenvironment, has attracted considerable interest as a potential therapeutic target. Recently, HIF-1α has been recognized as the critical target of cardiac glycosides for cancer therapy, but the molecular mechanism of cardiac glycosides' inhibition of HIF-1α is still poorly understood. In the present study, we observed that neither HIF-1α mRNA levels nor HIF-1α protein degradation are affected by Ouabain. However, Ouabain was found to be associated with the regulation of HIF-1α translation. Basing on in silico, in vitro and ex vivo models of translation processing, further studies revealed that eIF4E plays a critical role in the inhibitory effect of Ouabain on HIF-1α protein synthesis, rather than mTORC1, eIF2α signaling or Na(+)/K(+)-ATPase inhibition. Mechanistically, Ouabain directly binds eIF4E, disrupts eIF4E/eIF4G association (200 μM, Inhibit rate =61 ± 3%) but not the eIF4E/mRNA complex formation (200 μM, Inhibit rate =18 ± 5%) both in vitro and in cells, thereby inhibiting the intracellular cap-dependent translation. The association between Ouabain and eIF4E not only raises the hope of using cardiac glycosides for cancer therapeutics more rational, but also offers a pharmacologic means for developing novel anti-cancer HIF-1α antagonists.
Collapse
Affiliation(s)
- Ji Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lingjuan He
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guanyu Lin
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chunqi Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Carston R Wagner
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Qiaojun He
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Didiot MC, Hewett J, Varin T, Freuler F, Selinger D, Nick H, Reinhardt J, Buckler A, Myer V, Schuffenhauer A, Guy CT, Parker CN. Identification of cardiac glycoside molecules as inhibitors of c-Myc IRES-mediated translation. ACTA ACUST UNITED AC 2012; 18:407-19. [PMID: 23150017 DOI: 10.1177/1087057112466698] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Translation initiation is a fine-tuned process that plays a critical role in tumorigenesis. The use of small molecules that modulate mRNA translation provides tool compounds to explore the mechanism of translational initiation and to further validate protein synthesis as a potential pharmaceutical target for cancer therapeutics. This report describes the development and use of a click beetle, dual luciferase cell-based assay multiplexed with a measure of compound toxicity using resazurin to evaluate the differential effect of natural products on cap-dependent or internal ribosome entry site (IRES)-mediated translation initiation and cell viability. This screen identified a series of cardiac glycosides as inhibitors of IRES-mediated translation using, in particular, the oncogene mRNA c-Myc IRES. Treatment of c-Myc-dependent cancer cells with these compounds showed a decrease in c-Myc protein associated with a significant modulation of cell viability. These findings suggest that inhibition of IRES-mediated translation initiation may be a strategy to inhibit c-Myc-driven tumorigenesis.
Collapse
|
9
|
Weidemann H. "The Lower Threshold" phenomenon in tumor cells toward endogenous digitalis-like compounds: Responsible for tumorigenesis? J Carcinog 2012; 11:2. [PMID: 22438768 PMCID: PMC3307333 DOI: 10.4103/1477-3163.92999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/01/2011] [Indexed: 02/06/2023] Open
Abstract
Since their first discovery as potential anti-cancer drugs decades ago, there is increasing evidence that digitalis-like compounds (DLC) have anti-tumor effects. Less is known about endogenous DLC (EDLC) metabolism and regulation. As stress hormones synthesized in and secreted from the adrenal gland, they likely take part in the hypothalamo-pituitary-adrenal (HPA) axis. In a previous study, we revealed reduced EDLC concentrations in plasma and organs from immune-compromised animals and proposed that a similar situation of a deregulated HPA axis with "adrenal EDLF exhaustion" may contribute to tumorigenesis in chronic stress situations. Here, we put forward the hypothesis that a lowered EDLC response threshold of tumor cells as compared with normal cells increases the risk of tumorigenesis, especially in those individuals with reduced EDLC plasma concentrations after chronic stress exposure. We will evaluate this hypothesis by (a) summarizing the effects of different DLC concentrations on tumor as compared with normal cells and (b) reviewing some essential differences in the Na/K-ATPase of tumor as compared with normal cells (isoform pattern, pump activity, mutations of other signalosome receptors). We will conclude that (1) tumor cells, indeed, seem to have their individual "physiologic" EDLC response range that already starts at pmolar levels and (2) that individuals with markedly reduced (pmolar) EDLC plasma levels are predisposed to cancer because these EDLC concentrations will predominantly stimulate the proliferation of tumor cells. Finally, we will summarize preliminary results from our department supporting this hypothesis.
Collapse
Affiliation(s)
- Heidrun Weidemann
- Department of Oncology, Hadassah-Hebrew University, Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Xu ZW, Wang FM, Gao MJ, Chen XY, Hu WL, Xu RC. Targeting the Na(+)/K(+)-ATPase alpha1 subunit of hepatoma HepG2 cell line to induce apoptosis and cell cycle arresting. Biol Pharm Bull 2010; 33:743-51. [PMID: 20460749 DOI: 10.1248/bpb.33.743] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research has shown that the Na(+)/K(+)-ATPase alpha1 subunit is a novel anti-cancer target, which plays pivotal roles in malignant cell ion transport, metabolism, migration and signal transduction. The purpose of the present study was to investigate the anti-cancer effects of ouabain and Na(+)/K(+)-ATPase alpha1 small interfering ribonucleic acid (siRNA) on HepG2 cell proliferation, apoptosis and cell cycle, and to explore the molecular mechanisms. The expression of Na(+)/K(+)-ATPase alpha1 subunit in human hepatocellular carcinoma (HCC), normal liver tissues and human HCC line (HepG2, SMMC-7721 and Bel-7402) has been investigated. Using the ouabain and Na(+)/K(+)-ATPase alpha1 subunit siRNA, which target the Na(+)/K(+)-ATPase, we have evaluated the effects of inhibiting Na(+)/K(+)-ATPase alpha1 in human HepG2 cells with respect to cell proliferation, morphology, cell cycle, impact on intracellular Ca2++, reactive oxygen species (ROS) concentration, and correlated gene expression level on messenger ribonucleic acid (mRNA) and protein. Our data showed that the expression Na(+)/K(+)-ATPase alpha1 subunit in HCC tissues is higher than that in normal liver tissues. Ouabain and Na(+)/K(+)-ATPase alpha1 siRNA could inhibit HepG2 cell proliferation. Ouabain could induce HepG2 cell apoptosis and generate S phase arrest, and siRNA could enhance the anti-cancer effect of ouabain that induced HepG2 cells apoptosis via an intracellular Ca(2+) and ROS increase-mediated, and generated cell cycle S phase arresting by decreasing the CyclinA1/cyclin-dependent kinase 2 (CDK2)/proliferating cell nuclear antigen (PCNA) complex product and increasing the expression of cyclin-dependent kinase inhibitor 1A (P21(CIP1)). We believe that targeting of the Na(+)/K(+)-ATPase alpha1 subunit in human HCC cells could provide new sight into the treatment of HCC.
Collapse
Affiliation(s)
- Zhong-Wei Xu
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, TianJin 300162, China
| | | | | | | | | | | |
Collapse
|
11
|
Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1491-502. [PMID: 20671264 DOI: 10.2353/ajpath.2010.091021] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hypoxia promotes the expansion of non-neoplastic stem and precursor cell populations in the normal brain, and is common in malignant brain tumors. We examined the effects of hypoxia on stem-like cells in glioblastoma (GBM). When GBM-derived neurosphere cultures are grown in 1% oxygen, hypoxia-inducible factor 1alpha (HIF1alpha) protein levels increase dramatically, and mRNA encoding other hypoxic response genes, such as those encoding hypoxia-inducible gene-2, lysyl oxidase, and vascular endothelial growth factor, are induced over 10-fold. Hypoxia increases the stem-like side population over fivefold, and the percentage of cells expressing CD133 threefold or more. Notch pathway ligands and targets are also induced. The rise in the stem-like fraction in GBM following hypoxia is paralleled by a twofold increase in clonogenicity. We believe HIF1alpha plays a causal role in these changes, as when oxygen-stable HIF1alpha is expressed in normoxic glioma cells CD133 is induced. We used digoxin, which has been shown to lower HIF protein levels in vitro and in vivo, to inhibit the hypoxic response. Digoxin suppressed HIF1alpha protein expression, HIF1alpha downstream targets, and slowed tumor growth in vivo. In addition, pretreatment with digoxin reduced GBM flank xenograft engraftment of hypoxic GBM cells, and daily intraperitoneal injections of digoxin were able to significantly inhibit the growth of established subcutaneous glioblastoma xenografts, and suppressed expression of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Eli E Bar
- Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
12
|
Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1219-29. [PMID: 20211726 DOI: 10.1016/j.bbadis.2010.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/26/2010] [Accepted: 02/27/2010] [Indexed: 12/26/2022]
Abstract
Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the most common causes of hypertension. In a small minority of cases, enhanced Na(+) reabsorption by the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of the kidney, adrenal cortex, or pituitary. Far more frequently, however, salt retention may be the result of minor renal injury or small genetic variation in renal salt transport mechanisms. How salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of hypertension) and the elevation of blood pressure remains an enigma. Here we review the evidence that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na(+) pumps, type-1 Na/Ca exchangers, and receptor- and store-operated Ca(2+) channels play key roles in the pathway that links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate that ouabain upregulates arterial myocyte Ca(2+) signaling mechanisms that promote vasoconstriction, while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to hypertension.
Collapse
|
13
|
McCarty MF, Barroso-Aranda J, Contreras F. Practical strategies for suppressing hypoxia-inducible factor activity in cancer therapy. Med Hypotheses 2010; 74:789-97. [PMID: 20089365 DOI: 10.1016/j.mehy.2009.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 12/18/2022]
Abstract
The utility of anti-angiogenic strategies for cancer control is strongly compromised by hypoxia-driven phenotypic changes in cancer cells, which make cancer cells more invasive and more prone to give rise to metastases. A key mediator of this phenotypic shift is the transcription factor hypoxia-inducible factor-1 (HIF-1), which acts directly and indirectly to promote the epidermal-mesenchymal transition, boost cancer invasiveness, increase production of angiogenic factors, and induce chemoresistance. In some cancers, HIF-1 activity is constitutively elevated even in aerobic environments, making the cancer harder to treat and control. Practical strategies for suppressing HIF-1 activation may include the following: inhibiting NF-kappaB activation with salicylic acid and/or silibinin, which should decrease transcription of the HIF-1alpha gene; suppressing translation of HIF-1alpha mRNA with drugs that inhibit mTOR or topoisomerase I; supporting the effective activity of prolyl hydroxylases - which promote proteasomal degradation of HIF-1alpha under aerobic conditions - with antioxidant measures, alpha-ketoglutarate, and possibly dichloroacetate; promoting the O(2)-independent proteasomal degradation of HIF-1alpha with agents that inhibit the chaperone protein Hsp90; and blocking HIF-1 binding to its DNA response elements with anthracyclines. The utility of various combinations of these strategies should be tested in cancer cell cultures and rodent xenograft models; initial efforts in this regard have yielded encouraging results. Comprehensive strategies for suppressing HIF-1 activity can be expected to complement the efficacy of cancer chemotherapy and of effective anti-angiogenic regimens.
Collapse
Affiliation(s)
- Mark F McCarty
- Oasis of Hope Hospital, Paseo Playas 19, Playas de Tijuana, Tijuana, B.C., Mexico.
| | | | | |
Collapse
|
14
|
Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci U S A 2008; 105:19579-86. [PMID: 19020076 DOI: 10.1073/pnas.0809763105] [Citation(s) in RCA: 500] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A library of drugs that are in clinical trials or use was screened for inhibitors of hypoxia-inducible factor 1 (HIF-1). Twenty drugs inhibited HIF-1-dependent gene transcription by >88% at a concentration of 0.4 microM. Eleven of these drugs were cardiac glycosides, including digoxin, ouabain, and proscillaridin A, which inhibited HIF-1alpha protein synthesis and expression of HIF-1 target genes in cancer cells. Digoxin administration increased latency and decreased growth of tumor xenografts, whereas treatment of established tumors resulted in growth arrest within one week. Enforced expression of HIF-1alpha by transfection was not inhibited by digoxin, and xenografts derived from these cells were resistant to the anti-tumor effects of digoxin, demonstrating that HIF-1 is a critical target of digoxin for cancer therapy.
Collapse
|
15
|
Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci U S A 2008. [PMID: 19020076 DOI: 10.1073/pnas.08097631050809763105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A library of drugs that are in clinical trials or use was screened for inhibitors of hypoxia-inducible factor 1 (HIF-1). Twenty drugs inhibited HIF-1-dependent gene transcription by >88% at a concentration of 0.4 microM. Eleven of these drugs were cardiac glycosides, including digoxin, ouabain, and proscillaridin A, which inhibited HIF-1alpha protein synthesis and expression of HIF-1 target genes in cancer cells. Digoxin administration increased latency and decreased growth of tumor xenografts, whereas treatment of established tumors resulted in growth arrest within one week. Enforced expression of HIF-1alpha by transfection was not inhibited by digoxin, and xenografts derived from these cells were resistant to the anti-tumor effects of digoxin, demonstrating that HIF-1 is a critical target of digoxin for cancer therapy.
Collapse
|