1
|
Validated Simple HPLC-UV Method for Mycophenolic Acid (MPA) Monitoring in Human Plasma. Internal Standardization: Is It Necessary? Molecules 2021; 26:molecules26237252. [PMID: 34885834 PMCID: PMC8658973 DOI: 10.3390/molecules26237252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the work was to prepare a simple but reliable HPLC-UV method for the routine monitoring of mycophenolic acid (MPA). Sample preparation was based on plasma protein precipitation with acetonitrile. The isocratic separation of MPA and internal standard (IS) fenbufen was made on Supelcosil LC-CN column (150 × 4.6 mm, 5 µm) using a mobile phase: CH3CN:H2O:0.5M KH2PO4:H3PO4 (260:700:40:0.4, v/v). UV detection was set at 305 nm. The calibration covered the MPA concentration range: 0.1–40 µg/mL. The precision was satisfactory with RSD of 0.97–7.06% for intra-assay and of 1.92–5.15% for inter-assay. The inaccuracy was found between −5.72% and +2.96% (+15.40% at LLOQ) and between −8.82% and +5.31% (+19.00% at LLOQ) for intra- and inter-assay, respectively, fulfilling acceptance criteria. After a two-year period of successful application, the presented method has been retrospectively calibrated using the raw data disregarding the IS in the calculations. The validation and stability parameters were similar for both calculation methods. MPA concentrations were recalculated and compared in 1187 consecutive routine therapeutic drug monitoring (TDM) trough plasma samples from mycophenolate-treated patients. A high agreement (r2 = 0.9931, p < 0.0001) of the results was found. A Bland–Altman test revealed a mean bias of −0.011 μg/mL (95% CI: −0.017; −0.005) comprising −0.14% (95% Cl: −0.39; +0.11), whereas the Passing–Bablok regression was y = 0.986x + 0.014. The presented method can be recommended as an attractive analytical tool for medical (hospital) laboratories equipped with solely basic HPLC apparatus. The procedure can be further simplified by disapplying an internal standard while maintaining appropriate precision and accuracy of measurements.
Collapse
|
2
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Andreu F, Colom H, Elens L, van Gelder T, van Schaik RHN, Hesselink DA, Bestard O, Torras J, Cruzado JM, Grinyó JM, Lloberas N. A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach. Clin Pharmacokinet 2018; 56:963-975. [PMID: 28050888 DOI: 10.1007/s40262-016-0491-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in the CYP3A5 and CYP3A4 genes have been reported to be an important cause of variability in the pharmacokinetics of tacrolimus in renal transplant patients. The aim of this study was to merge all of the new genetic information available with tacrolimus pharmacokinetics to generate a more robust population model with data from renal transplant recipients. METHODS Tacrolimus exposure data from 304 renal transplant recipients were collected throughout the first year after transplantation and were simultaneously analyzed with a population pharmacokinetic approach using NONMEM® version 7.2. RESULTS The tacrolimus whole-blood concentration versus time data were best described by a two-open-compartment model with inter-occasion variability assigned to plasma clearance. The following factors led to the final model, which significantly decreased the minimum objective function value (p < 0.001): a new genotype cluster variable combining the CYP3A5*3 and CYP3A4*22 SNPs defined as extensive, intermediate, and poor metabolizers; the standardization of tacrolimus whole blood concentrations to a hematocrit value of 45%; and age included as patients <63 years versus patients ≥63 years. External validation confirmed the prediction ability of the model with median bias and precision values of 1.17 ng/mL (95% confidence interval [CI] -3.68 to 4.50) and 1.64 ng/mL (95% CI 0.11-5.50), respectively. Simulations showed that, for a given age and hematocrit at the same fixed dose, extensive metabolizers required the highest doses followed by intermediate metabolizers and then poor metabolizers. CONCLUSIONS Tacrolimus disposition in renal transplant recipients was described using a new population pharmacokinetic model that included the CYP3A5*3 and CYP3A4*22 genotype, age, and hematocrit.
Collapse
Affiliation(s)
- Franc Andreu
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.,Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Laure Elens
- Department of Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ronald H N van Schaik
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Oriol Bestard
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Grinyó
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Nuria Lloberas
- Laboratory 4122, Nephrology Service and Laboratory of Experimental Nephrology, University of Barcelona, Campus Bellvitge, Pavelló de Govern, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
4
|
Rivera SM, Hwang JK, Slovak JE, Court MH, Villarino NF. Simultaneous determination of mycophenolic acid and its glucuronide and glycoside derivatives in canine and feline plasma by UHPLC-UV. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/01/2017] [Accepted: 01/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sol Maiam Rivera
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine; Washington State University; Pullman Washington United States
| | - Julianne K. Hwang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine; Washington State University; Pullman Washington United States
| | - Jeniffer E. Slovak
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine; Washington State University; Pullman Washington United States
| | - Michael H. Court
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine; Washington State University; Pullman Washington United States
| | - Nicolas F. Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine; Washington State University; Pullman Washington United States
| |
Collapse
|
5
|
Rani S, Malik AK, Kaur R, Kaur R. A Review for the Analysis of Antidepressant, Antiepileptic and Quinolone Type Drugs in Pharmaceuticals and Environmental Samples. Crit Rev Anal Chem 2016; 46:424-42. [DOI: 10.1080/10408347.2016.1141670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Susheela Rani
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | | | - Ramandeep Kaur
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Ripneel Kaur
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | | |
Collapse
|
6
|
Zhu L, Yang J, Zhang Y, Jing Y, Zhang Y, Li G. Effects ofCYP3A5genotypes,ABCB1 C3435TandG2677T/Apolymorphism on pharmacokinetics of Tacrolimus in Chinese adult liver transplant patients. Xenobiotica 2015; 45:840-6. [DOI: 10.3109/00498254.2015.1021733] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Musuamba FT, Mourad M, Haufroid V, Bosmans JL, Sennesael JJ, Verbeeck RK, Wallemacq P. PREDICTIVE PERFORMANCES OF DIFFERENT THERAPEUTIC DRUG MONITORING APPROACHES TO ASSESS TACROLIMUS AND MYCOPHENOLIC ACID EXPOSURE. Acta Clin Belg 2014. [DOI: 10.1179/acb.2010.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Nguyen Thi MT, Capron A, Mourad M, Wallemacq P. Mycophenolic acid quantification in human peripheral blood mononuclear cells using liquid chromatography–tandem mass spectrometry. Clin Biochem 2013; 46:1909-11. [DOI: 10.1016/j.clinbiochem.2013.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
|
9
|
Musuamba FT, Mourad M, Haufroid V, De Meyer M, Capron A, Delattre IK, Verbeeck RK, Wallemacq P. Statistical tools for dose individualization of mycophenolic acid and tacrolimus co-administered during the first month after renal transplantation. Br J Clin Pharmacol 2013; 75:1277-88. [PMID: 23072565 DOI: 10.1111/bcp.12007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 10/09/2012] [Indexed: 11/29/2022] Open
Abstract
AIM To predict simultaneously the area under the concentration-time curve during one dosing interval [AUC(0,12 h)] for mycophenolic acid (MPA) and tacrolimus (TAC), when concomitantly used during the first month after transplantation, based on common blood samples. METHODS Data were from two different sources, real patient pharmacokinetic (PK) profiles from 65 renal transplant recipients and 9000 PK profiles simulated from previously published models on MPA or TAC in the first month after transplantation. Multiple linear regression (MLR) and Bayesian estimation using optimal samples were performed to predict MPA and TAC AUC(0,12 h) based on two concentrations. RESULTS The following models were retained: AUC(0,12 h) = 16.5 + 4.9 × C1.5 + 6.7 × C3.5 (r(2) = 0.82, rRMSE = 9%, with simulations and r(2) = 0.66, rRMSE = 24%, with observed data) and AUC(0,12 h) = 24.3 + 5.9 × C1.5 + 12.2 × C3.5 (r(2) = 0.94, rRMSE = 12.3%, with simulations r(2) = 0.74, rRMSE = 15%, with observed data) for MPA and TAC, respectively. In addition, bayesian estimators were developed including parameter values from final models and values of concentrations at 1.5 and 3.5 h after dose. Good agreement was found between predicted and reference AUC(0,12 h) values: r(2) = 0.90, rRMSE = 13% and r(2) = 0.97, rRMSE = 5% with simulations for MPA and TAC, respectively and r(2) = 0.75, rRMSE = 11% and r(2) = 0.83, rRMSE = 7% with observed data for MPA and TAC, respectively. CONCLUSION Statistical tools were developed for simultaneous MPA and TAC therapeutic drug monitoring. They can be incorporated in computer programs for patient dose individualization.
Collapse
Affiliation(s)
- Flora T Musuamba
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Upadhyay V, Trivedi V, Shah G, Yadav M, Shrivastav PS. Determination of mycophenolic acid in human plasma by ultra performance liquid chromatography tandem mass spectrometry. J Pharm Anal 2013; 4:205-216. [PMID: 29403884 PMCID: PMC5761118 DOI: 10.1016/j.jpha.2013.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/03/2013] [Indexed: 11/16/2022] Open
Abstract
A simple, sensitive and high throughput ultra performance liquid chromatography tandem mass spectrometry method has been developed for the determination of mycophenolic acid in human plasma. The method involved simple protein precipitation of MPA along with its deuterated analog as an internal standard (IS) from 50 µL of human plasma. The chromatographic analysis was done on Acquity UPLC C18 (100 mm×2.1 mm, 1.7 µm) column under isocratic conditions using acetonitrile and 10 mM ammonium formate, pH 3.00 (75:25, v/v) as the mobile phase. A triple quadrupole mass spectrometer operating in the positive ionization mode was used for quantitation. In-source conversion of mycophenolic glucuronide metabolite to the parent drug was selectively controlled by suitable optimization of cone voltage, cone gas flow and desolvation temperature. The method was validated over a wide concentration range of 15-15000 ng/mL. The mean extraction recovery for the analyte and IS was >95%. Matrix effect expressed as matrix factors ranged from 0.97 to 1.02. The method was successfully applied to support a bioequivalence study of 500 mg mycophenolate mofetil tablet in 72 healthy subjects.
Collapse
Affiliation(s)
- Vivek Upadhyay
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India
| | - Vikas Trivedi
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India
| | - Gaurang Shah
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India
| | - Manish Yadav
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India
| | - Pranav S. Shrivastav
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380009, India
- Corresponding author at: Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380009, India. Tel.: +91 079 2630 0969; fax: +91 079 2630 8545.
| |
Collapse
|
11
|
Musuamba FT, Mourad M, Haufroid V, Demeyer M, Capron A, Delattre IK, Delaruelle F, Wallemacq P, Verbeeck RK. A simultaneous d-optimal designed study for population pharmacokinetic analyses of mycophenolic Acid and tacrolimus early after renal transplantation. J Clin Pharmacol 2011; 52:1833-43. [PMID: 22207766 DOI: 10.1177/0091270011423661] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mycophenolic acid (MPA) and tacrolimus (TAC) are immunosuppressive agents used in combination with corticosteroids for the prevention of acute rejection after solid organ transplantation. Their pharmacokinetics (PK) show considerable unexplained intraindividual and interindividual variability, particularly in the early period after transplantation. The main objective of the present work was to design a study based on D-optimality to describe the PK of the 2 drugs with good precision and accuracy and to explain their variability by means of patients' demographics, biochemical test results, and physiological characteristics. Pharmacokinetic profiles of MPA and TAC were obtained from 65 stable adult renal allograft recipients on a single occasion (ie, day 15 after transplantation). A sampling schedule was estimated based on the D-optimality criterion with the POPED software, using parameter values from previously published studies on MPA and TAC modeling early after transplantation. Subsequently, a population PK model describing MPA and TAC concentrations was developed using nonlinear mixed-effects modeling. Optimal blood-sampling times for determination of MPA and TAC concentrations were estimated to be at 0 (predose) and at 0.24, 0.64, 0.98, 1.37, 2.38, and 11 hours after oral intake of mycophenolate and TAC. The PK of MPA and TAC were best described by a 2-compartment model with first-order elimination. For MPA, the absorption was best described by a transit compartment model, whereas first-order absorption with a lag time best described TAC transfer from the gastrointestinal tract. Parameters were estimated with good precision and accuracy. While hematocrit levels and CYP3A5 genetic polymorphism significantly influenced TAC clearance, the pharmaceutical formulation and MRP2 genetic polymorphism were retained as significant covariates on MPA absorption and elimination, respectively. The prospective use of the simultaneous D-optimal design approach for MPA and TAC has allowed good estimation of MPA and TAC PK parameters in the early period after transplantation characterized by a very high unexplained variability. The influence of some relevant covariates could be shown.
Collapse
Affiliation(s)
- Flora Tshinanu Musuamba
- Louvain Drug Research Institute, Louvain Centre for Toxicology and Applied Pharmacology, LDRI/PKDM B1.73.13, Av. E. Mounier 73, 1200 Bruxelles, Belgique.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
A high-throughput U-HPLC-MS/MS assay for the quantification of mycophenolic acid and its major metabolites mycophenolic acid glucuronide and mycophenolic acid acyl-glucuronide in human plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 883-884:113-9. [PMID: 21839692 DOI: 10.1016/j.jchromb.2011.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/25/2011] [Accepted: 07/13/2011] [Indexed: 12/29/2022]
Abstract
Mycophenolic acid (MPA) is used as an immunosuppressant after organ transplantation and for the treatment of immune diseases. There is increasing evidence that therapeutic drug monitoring and plasma concentration-guided dose adjustments are beneficial for patients to maintain immunosuppressive efficacy and to avoid toxicity. The major MPA metabolite that can be found in high concentrations in plasma is MPA glucuronide (MPAG). A metabolite usually present at lower concentrations, MPA acyl-glucuronide (AcMPAG), has been implicated in some of the adverse effects of MPA. We developed and validated an automated high-throughput ultra-high performance chromatography-tandem mass spectrometry (U-HPLC-MS/MS) assay using liquid-handling robotic extraction for the quantification of MPA, MPAG, and AcMPAG in human EDTA plasma and urine. The ranges of reliable response were 0.097 (lower limit of quantitation) to 200 μg/mL for MPA and MPAG and 0.156-10 μg/mL for AcMPAG in human urine and plasma. The inter-day accuracies were 94.3-104.4%, 93.8-105.0% and 94.4-104.7% for MPA, MPAG and AcMPAG, respectively. Inter-day precisions were 0.7-7.8%, 0.9-6.9% and 1.6-8.6% for MPA, MPAG and AcMPAG. No matrix interferences, ion suppression/enhancement and carry-over were detected. The total assay run time was 2.3 min. The assay met all predefined acceptance criteria and the quantification of MPA was successfully cross-validated with an LC-MS/MS assay routinely used for clinical therapeutic drug monitoring. The assay has proven to be robust and reliable during the measurement of samples from several pharmacokinetics trials.
Collapse
|
13
|
Xue L, Zhang H, Ma S, Rui JZ, Miao LY. Population Pharmacokinetics and Pharmacogenetics of Tacrolimus in Healthy Chinese Volunteers. Pharmacology 2011; 88:288-94. [DOI: 10.1159/000331856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/18/2011] [Indexed: 11/19/2022]
|
14
|
Delavenne X, Juthier L, Pons B, Mariat C, Basset T. UPLC MS/MS method for quantification of mycophenolic acid and metabolites in human plasma: Application to pharmacokinetic study. Clin Chim Acta 2010; 412:59-65. [PMID: 20937266 DOI: 10.1016/j.cca.2010.09.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/10/2010] [Accepted: 09/10/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND We described the development and full validation of a rapid, high throughput sensible and accurate UPLC method using tandem mass spectrometry detection for mycophenolate acid (MPA) and its metabolites, MPA glucuronide (MPAG) and acyl MPA glucuronide (AcMPAG) concentration determination with MPA-D3 as internal standard in human plasma. METHODS Plasma pretreatment involved a one-step protein precipitation with acetonitrile. The separation was performed by reverse-phase chromatography on a Waters BEH HSST3 100 mm*2.1 mm*1.8 μm column. The multiple reaction monitoring transitions used for quantification were m/z 321.04→303.02 for MPA, 524.09→303.02 for AcMPAG and MPAG and 324.03→306.04 for MPA-D3 in the electrospray positive ionization mode. RESULTS The method was linear over the concentration range of 0.1-20mg/L for MPA and AcMPAG and 1-200mg/L for MPAG respectively. The intra- and inter-day precision values were below 14% and accuracy was from 94.0 to 103.3% at all quality control levels. The lower LOQ was 0.1 mg/L for MPA and AcMPAG, 1 mg/L for MPAG. CONCLUSION Sample analysis time was reduced to 7 min including sample preparation. The present method was successfully applied to a pharmacokinetic study following oral administration of enterocoated sodium mycophenolate in de novo renal transplantation.
Collapse
Affiliation(s)
- Xavier Delavenne
- Laboratory of Pharmacology and Toxicology, University Hospital, F-42055 Saint-Etienne, France.
| | | | | | | | | |
Collapse
|
15
|
Guo D, Xu LY, Pang LF, Tan ZR, Han Y, Yang H, Zhou G, Chen Y, Ouyang DS, Zhou HH. UPLC Analysis of Mycophenolic Acid and Its Phenol and Acyl Glucuronide Metabolites in Human Plasma. Chromatographia 2010. [DOI: 10.1365/s10337-010-1715-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
An Investigation Into the Bias Between Liquid Chromatography–Tandem Mass Spectrometry and an Enzyme Multiplied Immunoassay Technique for the Measurement of Mycophenolic Acid. Ther Drug Monit 2010; 32:420-6. [DOI: 10.1097/ftd.0b013e3181e6b348] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Taylor PJ, Tai CH, Franklin ME, Pillans PI. The current role of liquid chromatography-tandem mass spectrometry in therapeutic drug monitoring of immunosuppressant and antiretroviral drugs. Clin Biochem 2010; 44:14-20. [PMID: 20599871 DOI: 10.1016/j.clinbiochem.2010.06.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 12/29/2022]
Abstract
Therapeutic drug monitoring of critical dose immunosuppressant drugs is established clinical practice and there are similar good reasons to monitor antiretrovirals. The aim of this article is to review the recent literature (last five years), with particular reference to the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS). LC-MS/MS offers many potential advantages. The superior selectivity of LC-MS/MS over immunoassays for immunosuppressant drugs has been widely reported. Simultaneous measurement of a number of drugs can be performed. It is currently routine practice for the four major immunosuppressants (cyclosporin, tacrolimus, sirolimus and everolimus) to be simultaneously measured in whole blood. While up to 17 antiretroviral drugs have been simultaneously measured in plasma. The exquisite sensitivity of LC-MS/MS also provides the opportunity to measure these drugs in alternative matrices, such as dried blood spots, saliva, peripheral blood mononuclear cells and tissue. However, the clinical utility of measuring these classes of drugs in alternative matrices is still to be determined.
Collapse
Affiliation(s)
- Paul J Taylor
- Department of Clinical Pharmacology, Princess Alexandra Hospital, Brisbane, QLD, Australia.
| | | | | | | |
Collapse
|
18
|
Investigation of the crossreactivity of mycophenolic acid glucuronide metabolites and of mycophenolate mofetil in the Cedia MPA assay. Ther Drug Monit 2010; 32:79-85. [PMID: 20042920 DOI: 10.1097/ftd.0b013e3181cc342a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The immunosuppressant mycophenolic acid (MPA) used for solid organ transplantation is predominantly metabolized to a pharmacologically inactive phenolic glucuronide (MPAG) and, to a lesser extent, to the pharmacologically active acyl glucuronide (AcMPAG). The recently introduced CEDIA Mycophenolic Acid Assay from Microgenics has been reported to overestimate MPA in clinical samples and crossreactivity with AcMPAG has been suspected. A detailed investigation of the crossreactivity of AcMPAG and the prodrug mycophenolate mofetil (MMF) in the CEDIA assay is presented using pure substances. In addition, MPA concentrations in plasma were compared with a validated high-performance liquid chromatography-ultraviolet method. Plasma samples from kidney (KTx, n = 50), heart (HTx, n = 50), and liver (LTx, n = 50) transplant recipients were analyzed by the CEDIA (MPA) and a high-performance liquid chromatography-ultraviolet method (MMF, MPA, MPAG, AcMPAG). Crossreactivity of MMF (0.93-46.3 mg/L), MPAG (50-1000 mg/L), and AcMPAG (0.5-10 mg/L) was investigated using spiked drug-free plasma. Method comparison was performed using Bland & Altman and Passing & Bablok analysis. The method bias was correlated to AcMPAG concentrations using Spearman's rank correlation. Crossreactivity with AcMPAG and MMF was concentration-dependent and reached 215% and 143%, respectively. There was no crossreactivity with MPAG. The CEDIA assay showed a mean positive bias of 36.3% in patient samples. The mean bias was lowest with HTx samples (15%), 41.7% with KTx samples, and highest with LTx samples (52.3%). There was a positive correlation between the method bias and AcMPAG concentrations (r = 0.829; P < 0.001). No MMF was detected in patient samples. The CEDIA overestimates MPA concentrations on average by 36%. This bias is mainly the result of AcMPAG as previously observed with the EMIT MPA assay. It should be considered that the putative therapeutic range for MPA with the CEDIA assay will be higher than the range using high-performance liquid chromatography.
Collapse
|