1
|
Kim HK, Kim TJ. Current Status and Future Prospects of Stem Cell Therapy for Infertile Patients with Premature Ovarian Insufficiency. Biomolecules 2024; 14:242. [PMID: 38397479 PMCID: PMC10887045 DOI: 10.3390/biom14020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Premature ovarian insufficiency (POI), also known as premature menopause or premature ovarian failure, signifies the partial or complete loss of ovarian endocrine function and fertility before 40 years of age. This condition affects approximately 1% of women of childbearing age. Although 5-10% of patients may conceive naturally, conventional infertility treatments, including assisted reproductive technology, often prove ineffective for the majority. For infertile patients with POI, oocyte donation or adoption exist, although a prevalent desire persists among them to have biological children. Stem cells, which are characterized by their undifferentiated nature, self-renewal capability, and potential to differentiate into various cell types, have emerged as promising avenues for treating POI. Stem cell therapy can potentially reverse the diminished ovarian endocrine function and restore fertility. Beyond direct POI therapy, stem cells show promise in supplementary applications such as ovarian tissue cryopreservation and tissue engineering. However, technological and ethical challenges hinder the widespread clinical application of stem cells. This review examines the current landscape of stem cell therapy for POI, underscoring the importance of comprehensive assessments that acknowledge the diversity of cell types and functions. Additionally, this review scrutinizes the limitations and prospects associated with the clinical implementation of stem cell treatments for POI.
Collapse
Affiliation(s)
- Hye Kyeong Kim
- Department of Obstetrics & Gynecology, Infertility Center, CHA University Ilsan Medical Center, Goyang 10414, Republic of Korea;
| | - Tae Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 10414, Republic of Korea
| |
Collapse
|
2
|
Ding X, Lv S, Guo Z, Gong X, Wang C, Zhang X, Meng K. Potential Therapeutic Options for Premature Ovarian Insufficiency: Experimental and Clinical Evidence. Reprod Sci 2023; 30:3428-3442. [PMID: 37460850 DOI: 10.1007/s43032-023-01300-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/10/2023] [Indexed: 12/03/2023]
Abstract
Premature ovarian insufficiency (POI) is a condition in which a woman experiences premature decline in ovarian function before the age of 40 years, manifested by menstrual disorders, decreased fertility, and possibly postmenopausal symptoms such as insomnia, hot flashes, and osteoporosis, and is one of the predominant clinical syndromes leading to female infertility. Genetic, immunologic, iatrogenic and other factors, alone or in combination, have been reported to trigger POI, yet the etiology remains unknown in most cases. The main methods currently used clinically to ameliorate menopausal symptoms due to hypoestrogenemia in POI patients are hormone replacement therapy, while the primary methods available to address infertility in POI patients are oocyte donation and cryopreservation techniques, both of which have limitations to some degree. In recent years, researchers have continued to explore more efficient and safe therapies, and have achieved impressive results in preclinical trials. In this article, we will mainly review the three most popular therapies and their related signaling pathways published in the past ten years, with the aim of providing ideas for clinical applications.
Collapse
Affiliation(s)
- Xuechun Ding
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Shenmin Lv
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhipeng Guo
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaowei Gong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaoyan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Basic Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
3
|
Chen M, Jiang H, Zhang C. Selected Genetic Factors Associated with Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:ijms24054423. [PMID: 36901862 PMCID: PMC10002966 DOI: 10.3390/ijms24054423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.
Collapse
Affiliation(s)
- Mengchi Chen
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Haotian Jiang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
4
|
Vichinsartvichai P, Teeramara R, Jirasawas T, Sakoonwatanyoo P. Comparison of urinary adiponectin in the presence of metabolic syndrome in peri- and postmenopausal women. BMC Womens Health 2022; 22:70. [PMID: 35287667 PMCID: PMC8919907 DOI: 10.1186/s12905-022-01655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/09/2022] [Indexed: 11/11/2022] Open
Abstract
Objectives To find the association between urinary adiponectin and metabolic syndrome (MetS) in peri- and postmenopausal women and its potential application as a noninvasive screening for MetS. Methods A cross-sectional study was conducted in healthy peri- and postmenopausal women (defined by STRAW + 10 staging) aged at least 40 years who attended annual check-ups or menopause clinics were recruited. Baseline demographic data, MENQOL, anthropometric measurements, blood pressure, laboratory (FBS, total cholesterol, HDL-C, LDL-C, TG), and urinary adiponectin were collected. The MetS was diagnosed according to JIS 2009. Results 290 peri- and postmenopausal women had participated. The prevalence of Mets among our participants was 18%. Urinary adiponectin levels were similar in peri- and postmenopausal women with and without MetS (2.6 ± 2.2 vs. 2.3 ± 1.9 ng/mL, respectively, P = 0.55). Urinary adiponectin provides no diagnostic value for MetS (AUC = 0.516). Conclusions Urinary adiponectin has no role in screening and diagnosing MetS in peri- and postmenopausal women. The quest toward noninvasive screening for MetS is still going on.
Collapse
Affiliation(s)
- Patsama Vichinsartvichai
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Rd, Dusit, Bangkok, 10300, Thailand.
| | - Rattana Teeramara
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Rd, Dusit, Bangkok, 10300, Thailand
| | - Titima Jirasawas
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, 681 Samsen Rd, Dusit, Bangkok, 10300, Thailand
| | - Prirayapak Sakoonwatanyoo
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| |
Collapse
|
5
|
Nilsson E, Klukovich R, Sadler-Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics 2018; 13:875-895. [PMID: 30207508 PMCID: PMC6224216 DOI: 10.1080/15592294.2018.1521223] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
Two of the most prevalent ovarian diseases affecting women's fertility and health are Primary Ovarian Insufficiency (POI) and Polycystic Ovarian Syndrome (PCOS). Previous studies have shown that exposure to a number of environmental toxicants can promote the epigenetic transgenerational inheritance of ovarian disease. In the current study, transgenerational changes to the transcriptome and epigenome of ovarian granulosa cells are characterized in F3 generation rats after ancestral vinclozolin or DDT exposures. In purified granulosa cells from 20-day-old F3 generation females, 164 differentially methylated regions (DMRs) (P < 1 x 10-6) were found in the F3 generation vinclozolin lineage and 293 DMRs (P < 1 x 10-6) in the DDT lineage, compared to controls. Long noncoding RNAs (lncRNAs) and small noncoding RNAs (sncRNAs) were found to be differentially expressed in both the vinclozolin and DDT lineage granulosa cells. There were 492 sncRNAs (P < 1 x 10-4) in the vinclozolin lineage and 1,085 sncRNAs (P < 1 x 10-4) in the DDT lineage. There were 123 lncRNAs and 51 lncRNAs in the vinclozolin and DDT lineages, respectively (P < 1 x 10-4). Differentially expressed mRNAs were also found in the vinclozolin lineage (174 mRNAs at P < 1 x 10-4) and the DDT lineage (212 mRNAs at P < 1 x 10-4) granulosa cells. Comparisons with known ovarian disease associated genes were made. These transgenerational epigenetic changes appear to contribute to the dysregulation of the ovary and disease susceptibility that can occur in later life. Observations suggest that ancestral exposure to toxicants is a risk factor that must be considered in the molecular etiology of ovarian disease.
Collapse
Affiliation(s)
- Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
|