1
|
High Doses of D-Chiro-Inositol Alone Induce a PCO-Like Syndrome and Other Alterations in Mouse Ovaries. Int J Mol Sci 2021; 22:ijms22115691. [PMID: 34073634 PMCID: PMC8198710 DOI: 10.3390/ijms22115691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022] Open
Abstract
Administration of 1000-1500 mg/day D-Chiro-Inositol (DCIns) or a combination of Myo-Inositol (MyoIns) and DCIns in their plasma molar ratio (40:1) for three or more months are among recommended treatments for metabolic syndrome and/or Polycystic Ovary Syndrome (PCOS). We previously confirmed the efficacy of this formulation (8.2 mg/day MyoIns and 0.2 mg/day DCIns for 10 days) in a mouse PCOS model, but also observed negative effects on ovarian histology and function of formulations containing 0.4-1.6 mg/day DCIns. We therefore analyzed effects of higher doses of DCIns, 5, 10 and 20 mg/day, administered to young adult female mice for 21 days, on ovarian histology, serum testosterone levels and expression of the ovarian enzyme aromatase. Five mg/day DCIns (human correspondence: 1200 mg/day) altered ovarian histology, increased serum testosterone levels and reduced the amount of aromatase of negative controls, suggesting the induction of an androgenic PCOS model. In contrast, 10-20 mg/day DCIns (human correspondence: 2400-4800 mg/day) produced ovarian lesions resembling those typical of aged mice, and reduced serum testosterone levels without affecting aromatase amounts, suggesting a failure in steroidogenic gonadal activity. Notwithstanding physiological/biochemical differences between mice and humans, the observed pictures of toxicity for ovarian histology and function recommend caution when administering DCIns to PCOS patients at high doses and/or for periods spanning several ovulatory cycles.
Collapse
|
2
|
Park MJ, Ahn JW, Kim KH, Bang J, Kim SC, Jeong JY, Choi YE, Kim CW, Joo BS. Prediction of ovarian aging using ovarian expression of BMP15, GDF9, and C-KIT. Exp Biol Med (Maywood) 2020; 245:711-719. [PMID: 32223330 DOI: 10.1177/1535370220915826] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Ovarian aging is becoming a more important issue in terms of fertility preservation and infertility treatment. Serum anti-Mullerian hormone (AMH) level and antral follicle count (AFC) are being practically used as markers of ovarian aging as well as ovarian reserve in human. However, these factors have some drawbacks in assessing ovarian aging and reserve. Therefore, the identification of ovarian expressions of BMP15, GDF9, and C-KIT according to female could be applied as a potent predictor of ovarian aging. This work provides new information on the development of diagnosis and treatment strategy of age-related fertility decline and premature ovarian insufficiency.
Collapse
Affiliation(s)
- Min Jung Park
- Korea Institute for Public Sperm Bank, Busan 49241, Korea
| | - Jun-Woo Ahn
- Department of Obstetrics and Gynecology, College of Medicine, Ulsan University Hospital, Ulsan 44033, Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital, Busan 49241, Korea
| | - Junghee Bang
- Department of Cardiothoracic Surgery, Dong-A University Hospital, Busan 602-812, Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan National University Hospital, Busan 49241, Korea
| | - Jae Yi Jeong
- Department of Obstetrics and Gynecology, Sungkyunkwan University School of Medicine, 51353 Changwon, Korea
| | - Ye Eun Choi
- Department of Obstetrics and Gynecology, Sungkyunkwan University School of Medicine, 51353 Changwon, Korea
| | - Chang-Woon Kim
- Department of Obstetrics and Gynecology, Sungkyunkwan University School of Medicine, 51353 Changwon, Korea
| | - Bo Sun Joo
- Korea Institute for Public Sperm Bank, Busan 49241, Korea.,Department of Cardiothoracic Surgery, Dong-A University Hospital, Busan 602-812, Korea
| |
Collapse
|
3
|
McCloskey CW, Cook DP, Kelly BS, Azzi F, Allen CH, Forsyth A, Upham J, Rayner KJ, Gray DA, Boyd RW, Murugkar S, Lo B, Trudel D, Senterman MK, Vanderhyden BC. Metformin Abrogates Age-Associated Ovarian Fibrosis. Clin Cancer Res 2019; 26:632-642. [PMID: 31597663 DOI: 10.1158/1078-0432.ccr-19-0603] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/02/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The ovarian cancer risk factors of age and ovulation are curious because ovarian cancer incidence increases in postmenopausal women, long after ovulations have ceased. To determine how age and ovulation underlie ovarian cancer risk, we assessed the effects of these risk factors on the ovarian microenvironment. EXPERIMENTAL DESIGN Aged C57/lcrfa mice (0-33 months old) were generated to assess the aged ovarian microenvironment. To expand our findings into human aging, we assembled a cohort of normal human ovaries (n = 18, 21-71 years old). To validate our findings, an independent cohort of normal human ovaries was assembled (n = 9, 41-82 years old). RESULTS We first validated the presence of age-associated murine ovarian fibrosis. Using interdisciplinary methodologies, we provide novel evidence that ovarian fibrosis also develops in human postmenopausal ovaries across two independent cohorts (n = 27). Fibrotic ovaries have an increased CD206+:CD68+ cell ratio, CD8+ T-cell infiltration, and profibrotic DPP4+αSMA+ fibroblasts. Metformin use was associated with attenuated CD8+ T-cell infiltration and reduced CD206+:CD68+ cell ratio. CONCLUSIONS These data support a novel hypothesis that unifies the primary nonhereditary ovarian cancer risk factors through the development of ovarian fibrosis and the formation of a premetastatic niche, and suggests a potential use for metformin in ovarian cancer prophylaxis.See related commentary by Madariaga et al., p. 523.
Collapse
Affiliation(s)
- Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Brendan S Kelly
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Feryel Azzi
- Institut du Cancer de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Quebec, Canada.,Department of Pathology and Cellular Biology, Université de Montréal, Montréal, Quebec, Canada
| | | | - Amanda Forsyth
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeremy Upham
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Douglas A Gray
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada
| | - Robert W Boyd
- Department of Physics and School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | | | - Bryan Lo
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Molecular Oncology Diagnostics Laboratory, Division of Anatomical Pathology, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dominique Trudel
- Institut du Cancer de Montréal and Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Quebec, Canada.,Department of Pathology and Cellular Biology, Université de Montréal, Montréal, Quebec, Canada
| | - Mary K Senterman
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Huber DA, Bazilio D, Lorenzon F, Sehnem S, Pacheco L, Anselmo-Franci JA, Lima FB. Cardiovascular Autonomic Responses in the VCD Rat Model of Menopause: Effects of Short- and Long-Term Ovarian Failure. Reprod Sci 2017; 25:1093-1105. [PMID: 29025323 DOI: 10.1177/1933719117734318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
After menopause, hypertension elevates the risk of cardiac diseases, one of the major causes of women's morbidity. The gradual depletion of ovarian follicles in rats, induced by 4-vinylcyclohexene diepoxide (VCD), is a model for studying the physiology of menopause. 4-Vinylcyclohexene diepoxide treatment leads to early ovarian failure (OF) and a hormonal profile comparable to menopause in humans. We have hypothesized that OF can compromise the balance between sympathetic and parasympathetic tones of the cardiovascular system, shifting toward dominance of the former. We aimed to study the autonomic modulation of heart and blood vessels and the cardiovascular reflexes in rats presenting short-term (80 days) or long-term (180 days) OF induced by VCD. Twenty-eight-day-old Wistar rats were submitted to VCD treatment (160 mg/kg, intraperitoneally) or vehicle (control) for 15 consecutive days and experiments were conducted at 80 or 180 days after the onset of treatment. Long-term OF led to an increase in the sympathetic activity to blood vessels and an impairment in the baroreflex control of the heart, evoked by physiological changes in arterial pressure. Despite that, long-term OF did not cause hypertension during the 180 days of exposure. Short-term OF did not cause any deleterious effect on the cardiovascular parameters analyzed. These data indicate that long-term OF does not disrupt the maintenance of arterial pressure homeostasis in rats but worsens the autonomic cardiovascular control. In turn, this can lead to cardiovascular complications, especially when associated with the aging process seen during human menopause.
Collapse
Affiliation(s)
- Domitila A Huber
- 1 Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil.,2 Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| | - Darlan Bazilio
- 1 Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| | - Flaviano Lorenzon
- 2 Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| | - Sibele Sehnem
- 2 Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| | - Lucas Pacheco
- 1 Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| | - Janete A Anselmo-Franci
- 3 Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fernanda B Lima
- 1 Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil.,2 Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
6
|
Smith ER, Wang Y, Xu XX. Development of a mouse model of menopausal ovarian cancer. Front Oncol 2014; 4:36. [PMID: 24616881 PMCID: PMC3935315 DOI: 10.3389/fonc.2014.00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/12/2014] [Indexed: 01/08/2023] Open
Abstract
Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology. A potentially useful model is the germ cell-deficient Wv (white spotting variant) mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1–5% (it is not a null mutation). Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer. Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami School of Medicine , Miami, FL , USA
| | - Ying Wang
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami School of Medicine , Miami, FL , USA
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami School of Medicine , Miami, FL , USA ; Department of Obstetrics and Gynecology, University of Miami School of Medicine , Miami, FL , USA
| |
Collapse
|
7
|
Garson K, Gamwell LF, Pitre EM, Vanderhyden BC. Technical challenges and limitations of current mouse models of ovarian cancer. J Ovarian Res 2012. [PMID: 23190474 PMCID: PMC3537528 DOI: 10.1186/1757-2215-5-39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The development of genetically engineered models (GEM) of epithelial ovarian cancer (EOC) has been very successful, with well validated models representing high grade and low grade serous adenocarcinomas and endometrioid carcinoma (EC). Most of these models were developed using technologies intended to target the ovarian surface epithelium (OSE), the cell type long believed to be the origin of EOC. More recent evidence has highlighted what is likely a more prevalent role of the secretory cell of the fallopian tube in the ontogeny of EOC, however none of the GEM of EOC have demonstrated successful targeting of this important cell type. The precise technologies exploited to develop the existing GEM of EOC are varied and carry with them advantages and disadvantages. The use of tissue specific promoters to model disease has been very successful, but the lack of any truly specific OSE or oviductal secretory cell promoters makes the outcomes of these models quite unpredictable. Effecting genetic change by the administration of adenoviral vectors expressing Cre recombinase may alleviate the perceived need for tissue specific promoters, however the efficiencies of infection of different cell types is subject to numerous biological parameters that may lead to preferential targeting of certain cell populations. One important future avenue of GEM of EOC is the evaluation of the role of genetic modifiers. We have found that genetic background can lead to contrasting phenotypes in one model of ovarian cancer, and data from other laboratories have also hinted that the exact genetic background of the model may influence the resulting phenotype. The different genetic backgrounds may modify the biology of the tumors in a manner that will be relevant to human disease, but they may also be modifying parameters which impact the response of the host to the technologies employed to develop the model.
Collapse
Affiliation(s)
- Kenneth Garson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | | | | | | |
Collapse
|