1
|
Wu YH, Chueh KS, Chuang SM, Long CY, Lu JH, Juan YS. Bladder Hyperactivity Induced by Oxidative Stress and Bladder Ischemia: A Review of Treatment Strategies with Antioxidants. Int J Mol Sci 2021; 22:ijms22116014. [PMID: 34199527 PMCID: PMC8199707 DOI: 10.3390/ijms22116014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Overactive bladder (OAB) syndrome, including frequency, urgency, nocturia and urgency incontinence, has a significantly negative impact on the quality-of-life scale (QoL) and can cause sufferer withdrawal from social activities. The occurrence of OAB can result from an imbalance between the production of pro-oxidants, such as free radicals and reactive species, and their elimination through protective mechanisms of antioxidant-induced oxidative stress. Several animal models, such as bladder ischemia/reperfusion (I/R), partial bladder outlet obstruction (PBOO) and ovarian hormone deficiency (OHD), have suggested that cyclic I/R during the micturition cycle induces oxidative stress, leading to bladder denervation, bladder afferent pathway sensitization and overexpression of bladder-damaging molecules, and finally resulting in bladder hyperactivity. Based on the results of previous animal experiments, the present review specifically focuses on four issues: (1) oxidative stress and antioxidant defense system; (2) oxidative stress in OAB and biomarkers of OAB; (3) OAB animal model; (4) potential nature/plant antioxidant treatment strategies for urinary dysfunction with OAB. Moreover, we organized the relationships between urinary dysfunction and oxidative stress biomarkers in urine, blood and bladder tissue. Reviewed information also revealed the summary of research findings for the effects of various antioxidants for treatment strategies for OAB.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-H.W.); (K.-S.C.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 80661, Taiwan
| | - Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-H.W.); (K.-S.C.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jian-He Lu
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pintung 91201, Taiwan;
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-H.W.); (K.-S.C.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101; Fax: +886-7-3506269
| |
Collapse
|
2
|
Dobberfuhl AD, Schuler C, Leggett RE, De EJB, Levin RM. Estrogen replacement is protective to the effect of in vitro hypoxia on female rabbit bladder and pelvic floor contractile response. Investig Clin Urol 2020; 61:432-440. [PMID: 32666001 PMCID: PMC7329650 DOI: 10.4111/icu.2020.61.4.432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose To explore the effect of estrogen replacement on pelvic floor and bladder contractile response to electrical field stimulation, following in vitro hypoxia in an animal model of surgical menopause. Materials and Methods Twelve female adult rabbits were divided into three groups: control, ovariectomy, and ovariectomy with estradiol replacement. At 4 weeks animals were euthanized. Bladder, coccygeus, and pubococcygeus were isolated. Tissues were equilibrated with oxygenated Tyrodes containing glucose and stimulated with electrical field stimulation. Tissues were then stimulated under hypoxic conditions for 1 hour using nitrogenated Tyrodes without glucose. Tissues were then re-oxygenated for 2 hours and stimulated. Results Pelvic floor required 10 times the stimulation duration (power) to achieve maximum contraction at 2 g baseline tension (10 ms duration) when compared to bladder (1 ms duration). Maximal tension generated was significantly greater for bladder than pelvic floor. Coccygeus and pubococcygeus were significantly less sensitive to the effects of hypoxia and had stable contractile response to field stimulation throughout the hour of hypoxia. Hypoxia resulted in progressive and rapid decline of bladder contractile strength. Following hypoxia, pelvic floor contractile recovery was superior to bladder. Improvement in the contractile response of both bladder and pelvic floor, during the period of post-hypoxia re-oxygenation, was significantly greater in ovariectomy animals treated with estradiol replacement. Conclusions Replacement of estradiol at time of ovariectomy reduced oxidative stress on tissue and was protective to the effects of hypoxia on pelvic floor and bladder contractile function.
Collapse
Affiliation(s)
- Amy D Dobberfuhl
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Elise J B De
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
3
|
Epigallocatechin-3-gallate alleviates bladder overactivity in a rat model with metabolic syndrome and ovarian hormone deficiency through mitochondria apoptosis pathways. Sci Rep 2018; 8:5358. [PMID: 29599473 PMCID: PMC5876359 DOI: 10.1038/s41598-018-23800-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) and ovarian hormone deficiency could affect bladder storage dysfunction. Epigallocatechin-3-gallate (EGCG), a polyphenolic compound in green tea, has been shown to protect against ovarian hormone deficiency induced overactive bladder (OAB). The present study investigated oxidative stress induced by MetS and bilateral ovariectomy (OVX), and elucidated the mechanism underlying the protective effect of EGCG (10 umol/kg/day) on bladder overactivity. Rats were fed with high fat high sugar (HFHS) diet to induce MetS and received ovariectomy surgery to deprive ovarian hormone. By dieting with HFHS for 6 months, rats developed MetS and OAB. MetS + OVX deteriorated bladder storage dysfunction more profound than MetS alone. MetS and MetS + OVX rats showed over-expression of inflammatory and fibrosis markers (1.7~3.8-fold of control). EGCG pretreatment alleviated storage dysfunction, and protected the bladders from MetS and OVX - induced interstitial fibrosis changes. Moreover, OVX exacerbated MetS related bladder apoptosis (2.3~4.5-fold of control; 1.8~2.6-fold of Mets group), enhances oxidative stress markers (3.6~4.3-fold of control; 1.8~2.2-fold of Mets group) and mitochondrial enzyme complexes subunits (1.8~3.7-fold of control; 1.5~3.4-fold of Mets group). EGCG pretreatment alleviated bladder apoptosis, attenuated oxidative stress, and reduced the mitochondrial and endoplasmic reticulum apoptotic signals. In conclusions, HFHS feeding and ovarian hormone deficiency enhances the generation of oxidative stress mediated through mitochondrial pathway. EGCG reduced the generation of oxidative stress and lessened bladder overactivity.
Collapse
|
4
|
Role of Topical Vaginal Estrogen in the Treatment of Overactive Bladder. CURRENT BLADDER DYSFUNCTION REPORTS 2014. [DOI: 10.1007/s11884-013-0224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|