1
|
Yoshimura Y, Iwahashi T, Kasuya T, Shimada T, Konishi K, Kamata A, Konishi M, Kazui A, Shiode R, Miyamura S, Oka K, Okada S, Tanaka H. Methylcobalamin-containing nanofiber sheets have better neuroprotective effects than small intestinal submucosa sheets. Sci Rep 2025; 15:950. [PMID: 39762256 PMCID: PMC11704040 DOI: 10.1038/s41598-024-78933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
Postoperative adhesion around nerves sometimes results in sensory and motor dysfunctions. To prevent these disorders, we have developed an electrospun nanofiber sheet incorporating methylcobalamin (MeCbl), an active form of vitamin B12 with anti-inflammatory and neuroregenerative effects. This study aimed to investigate the neuroprotective effects of MeCbl sheets against postoperative adhesion and to compare the effects of MeCbl sheets with those of porcine small intestinal submucosa (SIS) sheets using a rat sciatic nerve adhesion model. Behavioral and electrophysiological analyses showed superior results in the MeCbl sheet group compared with those in the untreated group, all of which were non-inferior to the SIS sheet group. Histological analysis revealed less collagen and inflammatory cell invasion into the nerve parenchyma and a higher number of residual axons and myelination rate in the MeCbl sheet group than in the untreated group. Moreover, the MeCbl sheet group was superior to the SIS sheet group in terms of the myelination rate and decreased number of infiltrating macrophages. Furthermore, the distribution of residual axons by diameter revealed that the MeCbl sheet group had thicker axons than the SIS sheet group. The use of MeCbl sheets may represent a novel approach for preventing secondary nervous system impairment following inflammation.
Collapse
Affiliation(s)
- Yoshiaki Yoshimura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Iwahashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taisuke Kasuya
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiki Shimada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsuyuki Konishi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kamata
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mai Konishi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Arisa Kazui
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine, 2-2 amadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryoya Shiode
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine, 2-2 amadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Miyamura
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine, 2-2 amadaoka, Suita, Osaka, 565-0871, Japan
| | - Kunihiro Oka
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine, 2-2 amadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Tanaka
- Department of Sports Medical Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Kellaway SC, Ullrich MM, Dziemidowicz K. Electrospun drug-loaded scaffolds for nervous system repair. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1965. [PMID: 38740385 DOI: 10.1002/wnan.1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Nervous system injuries, encompassing peripheral nerve injury (PNI), spinal cord injury (SCI), and traumatic brain injury (TBI), present significant challenges to patients' wellbeing. Traditional treatment approaches have limitations in addressing the complexity of neural tissue regeneration and require innovative solutions. Among emerging strategies, implantable materials, particularly electrospun drug-loaded scaffolds, have gained attention for their potential to simultaneously provide structural support and controlled release of therapeutic agents. This review provides a thorough exploration of recent developments in the design and application of electrospun drug-loaded scaffolds for nervous system repair. The electrospinning process offers precise control over scaffold characteristics, including mechanical properties, biocompatibility, and topography, crucial for creating a conducive environment for neural tissue regeneration. The large surface area of the resulting fibrous networks enhances biomolecule attachment, influencing cellular behaviors such as adhesion, proliferation, and migration. Polymeric electrospun materials demonstrate versatility in accommodating a spectrum of therapeutics, from small molecules to proteins. This enables tailored interventions to accelerate neuroregeneration and mitigate inflammation at the injury site. A critical aspect of this review is the examination of the interplay between structural properties and pharmacological effects, emphasizing the importance of optimizing both aspects for enhanced therapeutic outcomes. Drawing upon the latest advancements in the field, we discuss the promising outcomes of preclinical studies using electrospun drug-loaded scaffolds for nervous system repair, as well as future perspectives and considerations for their design and implementation. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Simon C Kellaway
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Mathilde M Ullrich
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Karolina Dziemidowicz
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
3
|
A novel transdermal delivery route for energy supplements: Electrospun chitosan/polyvinyl alcohol nanofiber patches loaded with vitamin B 12. Int J Biol Macromol 2023; 230:123187. [PMID: 36627031 DOI: 10.1016/j.ijbiomac.2023.123187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Nanofibrous patches have attracted much attention as a solution to resolve drug delivery challenges. In this study, vitamin B12- loaded polyvinyl alcohol (PVA)/chitosan (Cs) nanofiber patch (NFP) was electrospun and cross-linked by glutaraldehyde (GA). The physicochemical properties of the nanofiber patches were assessed by morphological studies, FTIR analysis, hydrophilicity test, mechanical tests, and in-vitro evaluations including biodegradability, MTT assay, and cumulative release test of vitamin. In-vivo studies were also carried out by measuring vitamin B12 levels in the bloodstream and conducting histopathology studies on the animal models. The results showed that the mean diameter of Cs/PVA/B12 and cross-linked patch were approximately 207 and 256 nm, respectively. Cross-linking of NFP led to the lower, slower, and more continuous release of the vitamin with a slight decrease in biodegradability, and an increase in the mechanical properties of the nanofiber patches. Furthermore, the cytocompatibility assay, MTT, and in vivo results revealed no cytotoxicity of Cs/PVA/B12 NFP towards L929 cell line. No lesion or tissue damage was observed in the skin tissue of the animal models wearing these skin patches. Therefore, B12-loaded NFP can be introduced as a potential candidate for commercial transdermal routes.
Collapse
|
4
|
Yoshida T, Kaibori M, Fujisawa N, Ishizuka M, Sumiyama F, Hatta M, Kosaka H, Matsui K, Suzuki K, Akama TO, Katano T, Yoshii K, Ebara M, Sekimoto M. Efficacy of Nanofiber Sheets Incorporating Lenvatinib in a Hepatocellular Carcinoma Xenograft Model. NANOMATERIALS 2022; 12:nano12081364. [PMID: 35458072 PMCID: PMC9025678 DOI: 10.3390/nano12081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 11/10/2022]
Abstract
Lenvatinib has a high response rate in unresectable advanced hepatocellular carcinoma (HCC). In this study, we investigated whether lenvatinib-incorporating poly(ε-caprolactone) sheets (lenvatinib sheets) as a drug delivery system (DDS) exerted antitumor effects in a murine HCC model. The lenvatinib sheets were designed for sustained release of approximately 1 mg lenvatinib for 14 days. For 14 days, 1 mg lenvatinib was orally administered to mice. Then, we compared the antitumor effects of lenvatinib sheets with those of oral lenvatinib. The tumor volume, body weight, and serum lenvatinib level were measured for 14 days. A peritoneal dissemination model was established to examine the survival prolongation effect of the lenvatinib sheets. Tumor growth was significantly inhibited in the lenvatinib sheet group compared with that in the no treatment and oral groups. The antitumor effect was significantly higher in the lenvatinib sheet group. Regardless of the insertion site, the serum lenvatinib levels were maintained and showed similar antitumor effects. The mitotic index was significantly inhibited in the lenvatinib sheet group compared with that in the control group. Furthermore, lenvatinib sheets improved the 30-day survival. Lenvatinib sheets showed sufficient antitumor effects and may serve as an effective novel DDS for advanced HCC.
Collapse
Affiliation(s)
- Terufumi Yoshida
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
- Correspondence: ; Tel.: +81-72-804-0101 (ext. 56130)
| | - Nanami Fujisawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; (N.F.); (M.E.)
| | - Mariko Ishizuka
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Fusao Sumiyama
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Masahiko Hatta
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Kosuke Matsui
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Kensuke Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Hirakata 573-1010, Japan;
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Hirakata 573-1010, Japan;
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan;
| | - Kengo Yoshii
- Department of Mathematics and Statistics in Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan;
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; (N.F.); (M.E.)
| | - Mitsugu Sekimoto
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| |
Collapse
|