1
|
Kamaraj M, Moghimi N, McCarthy A, Chen J, Cao S, Chethikkattuveli Salih AR, Joshi A, Jucaud V, Panayi A, Shin SR, Noshadi I, Khademhosseini A, Xie J, John JV. Granular Porous Nanofibrous Microspheres Enhance Cellular Infiltration for Diabetic Wound Healing. ACS NANO 2024; 18:28335-28348. [PMID: 39356827 DOI: 10.1021/acsnano.4c10044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Diabetic foot ulcers (DFUs) are a significant challenge in the clinical care of diabetic patients, often necessitating limb amputation and compromising the quality of life and life expectancy of this cohort. Minimally invasive therapies, such as modular scaffolds, are at the forefront of current DFU treatment, offering an efficient approach for administering therapeutics that accelerate tissue repair and regeneration. In this study, we report a facile method for fabricating granular nanofibrous microspheres (NMs) with predesigned structures and porosities. The proposed technology combines electrospinning and electrospraying to develop a therapeutic option for DFUs. Specifically, porous NMs were constructed using electrospun poly(lactic-co-glycolic acid) (PLGA):gelatin short nanofibers, followed by gelatin cross-linking. These NMs demonstrated enhanced cell adhesion to human dermal fibroblasts (HDF) during an in vitro cytocompatibility assessment. Notably, porous NMs displayed superior performance owing to their interconnected pores compared to nonporous NMs. Cell-laden NMs demonstrated higher Young's modulus values than NMs without loaded cells, suggesting improved material resiliency attributed to the reinforcement of cells and their secreted extracellular matrix. Dynamic injection studies on cell-laden NMs further elucidated their capacity to safeguard loaded cells under pressure. In addition, porous NMs promoted host cell infiltration, neovascularization, and re-epithelialization in a diabetic mouse wound model, signifying their effectiveness in healing diabetic wounds. Taken together, porous NMs hold significant potential as minimally invasive, injectable treatments that effectively promote tissue integration and regeneration.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland, Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Selena Cao
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | | | - Akshat Joshi
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Adriana Panayi
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg 69117, Germany
| | - Su Ryon Shin
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland, Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Johnson V John
- Terasaki Institute for Biomedical Innovations, Los Angeles, California 91367, United States
| |
Collapse
|
2
|
Armstrong DG, Orgill DP, Galiano RD, Glat PM, Kaufman JP, Carter MJ, DiDomenico LA, Zelen CM. A purified reconstituted bilayer matrix shows improved outcomes in treatment of non-healing diabetic foot ulcers when compared to the standard of care: Final results and analysis of a prospective, randomized, controlled, multi-centre clinical trial. Int Wound J 2024; 21:e14882. [PMID: 38606794 PMCID: PMC11010253 DOI: 10.1111/iwj.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
As the incidence of diabetic foot ulcers (DFU) increases, better treatments that improve healing should reduce complications of these ulcers including infections and amputations. We conducted a randomized controlled trial comparing outcomes between a novel purified reconstituted bilayer membrane (PRBM) to the standard of care (SOC) in the treatment of non-healing DFUs. This study included 105 patients who were randomized to either of two treatment groups (n = 54 PRBM; n = 51 SOC) in the intent to treat (ITT) group and 80 who completed the study per protocol (PP) (n = 47 PRBM; n = 33 SOC). The primary endpoint was the percentage of wounds closed after 12 weeks. Secondary outcomes included percent area reduction, time to healing, quality of life, and cost to closure. The DFUs that had been treated with PRBM healed at a higher rate than those treated with SOC (ITT: 83% vs. 45%, p = 0.00004, PP: 92% vs. 67%, p = 0.005). Wounds treated with PRBM also healed significantly faster than those treated with SOC with a mean of 42 versus 62 days for SOC (p = 0.00074) and achieved a mean wound area reduction within 12 weeks of 94% versus 51% for SOC (p = 0.0023). There were no adverse events or serious adverse events that were related to either the PRBM or the SOC. In comparison to the SOC, DFUs healed faster when treated with PRBM. Thus, the use of this PRBM is an effective option for the treatment of chronic DFUs.
Collapse
Affiliation(s)
- David G. Armstrong
- Division of Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Dennis P. Orgill
- Division of Plastic SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Robert D. Galiano
- Division of Plastic Surgery, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Paul M. Glat
- Surgery and PediatricsDrexel University College of Medicine, St. Christopher's Hospital for ChildrenPhiladelphiaPennsylvaniaUSA
| | - Jarrod P. Kaufman
- Department of Surgery, Temple University School of Medicine and McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | | | | |
Collapse
|
3
|
Ali Zahid A, Chakraborty A, Shamiya Y, Ravi SP, Paul A. Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications. MATERIALS HORIZONS 2022; 9:1850-1865. [PMID: 35485266 DOI: 10.1039/d2mh00115b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring new avenues for clinical management of chronic wounds holds the key to eliminating socioeconomic burdens and health-related concerns associated with this silent killer. Engineered biomaterials offer great promise for repair and regeneration of chronic wounds because of their ability to deliver therapeutics, protect the wound environment, and support the skin matrices to facilitate tissue growth. This mini review presents recent advances in biomaterial functionalities for enhancing wound healing and demonstrates a move from sub-optimal methods to multi-functionalized treatment approaches. In this context, we discuss the recently reported biomaterial characteristics such as bioadhesiveness, antimicrobial properties, proangiogenic attributes, and anti-inflammatory properties that promote chronic wound healing. In addition, we highlight the necessary mechanical and mass transport properties of such biomaterials. Then, we discuss the characteristic properties of various biomaterial templates, including hydrogels, cryogels, nanomaterials, and biomolecule-functionalized materials. These biomaterials can be microfabricated into various structures, including smart patches, microneedles, electrospun scaffolds, and 3D-bioprinted structures, to advance the field of biomaterial scaffolds for effective wound healing. Finally, we provide an outlook on the future while emphasizing the need for their detailed functional behaviour and inflammatory response studies in a complex in vivo environment for superior clinical outcomes and reduced regulatory hurdles.
Collapse
Affiliation(s)
- Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
4
|
Armstrong DG, Orgill DP, Galiano RD, Glat PM, Kaufman JP, Carter MJ, DiDomenico LA, Zelen CM. Use of a purified reconstituted bilayer matrix in the management of chronic diabetic foot ulcers improves patient outcomes vs standard of care: Results of a prospective randomised controlled multi-centre clinical trial. Int Wound J 2022; 19:1197-1209. [PMID: 35001559 PMCID: PMC9284637 DOI: 10.1111/iwj.13715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022] Open
Abstract
Diabetic foot infections continue to be a major challenge for health care delivery systems. Following encouraging results from a pilot study using a novel purified reconstituted bilayer matrix (PRBM) to treat chronic diabetic foot ulcers (DFUs), we designed a prospective, multi‐centre randomised trial comparing outcomes of PRBM at 12 weeks compared with a standard of care (SOC) using a collagen alginate dressing. The primary endpoint was percentage of wounds closed after 12 weeks. Secondary outcomes included assessments of complications, healing time, quality of life, and cost to closure. Forty patients were included in an intent‐to‐treat (ITT) and per‐protocol (PP) analysis, with 39 completing the study protocol (n = 19 PRBM, n = 20 SOC). Wounds treated with PRBM were significantly more likely to close than wounds treated with SOC (ITT: 85% vs 30%, P = .0004, PP: 94% vs 30% P = .00008), healed significantly faster (mean 37 days vs 67 days for SOC, P = .002), and achieved a mean wound area reduction within 12 weeks of 96% vs 8.9% for SOC. No adverse events (AEs) directly related to PRBM treatment were reported. Mean PRBM cost of healing was $1731. Use of PRBM was safe and effective for treatment of chronic DFUs.
Collapse
Affiliation(s)
- David G Armstrong
- Division of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dennis P Orgill
- Professional Education and Research Institute, Roanoke, Virginia, USA
| | - Robert D Galiano
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Paul M Glat
- Surgery and Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania, USA
| | - Jarrod P Kaufman
- Department of Surgery, Temple University School of Medicine and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Charles M Zelen
- Professional Education and Research Institute, Roanoke, Virginia, USA
| |
Collapse
|