1
|
Nackenhorst MC, Menges F, Bohmann B, Zschäpitz D, Bollwein C, Flemming S, Sachs N, Eilenberg W, Brostjan C, Neumayer C, Trenner M, Ibing W, Schelzig H, Reeps C, Maegdefessel L, Regele H, Wagenhäuser MU, Scholz CJ, Gasser TC, Busch A. Abdominal aortic aneurysm histomorphology shows different inflammatory aspects among patients and is not associated with classic risk factors - the HistAAA study. Cardiovasc Res 2025:cvaf071. [PMID: 40296831 DOI: 10.1093/cvr/cvaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 02/23/2025] [Indexed: 04/30/2025] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) treatment is upon a diameter threshold. Attempts for medical growth abrogation have failed thus far. This study aims to elucidate the heterogeneity of AAA histomorphology in correlation to individual patient and aneurysm metrics. METHODS AND RESULTS Samples from the left anterior aneurysm wall underwent histologic analysis including angiogenesis, calcification, fibrosis, type and grade of inflammation in adventitia and media. Clinical information and state of aneurysm (intact, symptomatic, ruptured, inflammatory) were retrieved. Semi-automated geometric analysis (Endosize©, Therenva) and finite element methods (A4Clinics© Research Edition, Vascops GmbH) were included.364 patients' samples (85.4% male, median age 69 years) were scored for acute or chronic inflammation, both not associated with rupture (52x), symptomatic disease (37x) or diameter (57 [52-69] mm; p = 0.87). The degree of fibrosis and the presence of angiogenesis were significantly higher (both p < 0.001) with increasing inflammation, which in turn significantly decreased with patient age (est = - 0.015/year, p = 0.017). No significant differences were seen for acute (vs. elective), male (vs. female) or diabetic patients. Aneurysm geometry (n=252) or annual growth rate (n=142) were not associated with histologic characteristics. Yet, local luminal thrombus formation was significantly higher with increasing inflammation (p = 0.04). CONCLUSION Type and degree of inflammation are the most distinguishable histologic characteristics in the AAA wall between individual patients, yet are not associated with diameter or rupture. Local luminal thrombus formation is associated with inflammatory features and suggests a vivid bio-physical compartment with intra-individual age-dependent differences.
Collapse
Affiliation(s)
| | - Felix Menges
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Bianca Bohmann
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - David Zschäpitz
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Christine Bollwein
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sven Flemming
- Department of General-, Visceral-, Transplant-, Vascular- and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance
| | - Wolf Eilenberg
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and Vienna General Hospital
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and Vienna General Hospital
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna and Vienna General Hospital
| | - Matthias Trenner
- Division of Vascular Medicine, St.-Josefs Hospital, Wiesbaden, Germany
| | - Wiebke Ibing
- Clinic of Vascular and Endovascular Surgery, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | - Hubert Schelzig
- Clinic of Vascular and Endovascular Surgery, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance
| | - Heinz Regele
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Markus Udo Wagenhäuser
- Clinic of Vascular and Endovascular Surgery, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Albert Busch
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Division of Vascular and Endovascular Surgery, Department for Visceral-, Thoracic and Vascular Surgery, Medical Faculty Carl Gustav Carus and University Hospital, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Jiang D, Shi Z, Wei J, Tran H, Zheng SL, Xu J, Lee CJ. Polygenic Risk Score Informed Clinical Model for Improving Abdominal Aortic Aneurysm Screening. Ann Vasc Surg 2024; 109:316-325. [PMID: 39067852 DOI: 10.1016/j.avsg.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a complex disease with environmental and genetic risk factors. Polygenic risk scores (PRSs) based on disease-specific risk-associated single nucleotide variants (SNVs) have demonstrated effectiveness in stratifying individual-level disease risk for cardiovascular diseases. This prospective cohort study assessed associations of PRS of AAA (PRSAAA) with risk of incident AAA, analyzed the effectiveness of a combined clinical-genetic risk model, and explored the clinical utility of the model in identifying high-risk individuals for AAA screening. METHODS PRSAAA was calculated using 911,440 SNVs and PRS of coronary artery disease was calculated using 2,324,683 SNVs derived from mixed ancestry genome-wide association studies. The UK Biobank was used as the study cohort. All individuals with complete genetic data available and no diagnosis of AAA at the time of recruitment were included in the analysis and followed prospectively to assess for incident AAA. A PRS-informed clinical model, Prob-AAA, was developed using clinically significant variables and PRSAAA. RESULTS Four hundred eighty-one thousand one hundred 5 individuals were included in the analysis with 2,668 incident AAA cases. Incident AAA increased from 0.30 to 0.93% between the lowest and highest decile of PRSAAA; similarly, severe AAA, requiring surgery and/or presenting with rupture, increased from 23 to 39% of incident AAA cases across deciles. PRSAAA was a predictor of incident AAA diagnosis (hazard ratio 2.06 [1.70-2.48]) independent of other clinical risk factors including male sex, older age, and smoking history. Prob-AAA was an independent predictor of incident AAA (hazard ratio 1.92 [1.69-2.20]), and identified 9.6% of cases of incident AAA compared to only 4.2% by PRSAAA. Current screening guidelines captured 5.7% of the overall cohort, with an incident AAA rate of approximately 3.2%. Among males not included by current guidelines, Prob-AAA identified an additional cohort, approximately 2% of the overall cohort, with a similar rate of incident AAA. CONCLUSIONS Prob-AAA, a PRS-informed clinical model for AAA, improved upon the predictive power of current, clinical risk factor-informed, screening guidelines for AAA.
Collapse
Affiliation(s)
- David Jiang
- Department of Surgery, University of Chicago Medicine, Chicago, IL, USA.
| | - Zhuqing Shi
- Program for Personalized Cancer Care, Endeavor Health (Formerly NorthShore University HealthSystem), Evanston, IL, USA
| | - Jun Wei
- Program for Personalized Cancer Care, Endeavor Health (Formerly NorthShore University HealthSystem), Evanston, IL, USA
| | - Huy Tran
- Program for Personalized Cancer Care, Endeavor Health (Formerly NorthShore University HealthSystem), Evanston, IL, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, Endeavor Health (Formerly NorthShore University HealthSystem), Evanston, IL, USA
| | - Jianfeng Xu
- Department of Surgery, University of Chicago Medicine, Chicago, IL, USA; Program for Personalized Cancer Care, Endeavor Health (Formerly NorthShore University HealthSystem), Evanston, IL, USA; Department of Surgery, Endeavor Health (Formerly NorthShore University HealthSystem), Evanston, IL, USA
| | - Cheong J Lee
- Department of Surgery, Endeavor Health (Formerly NorthShore University HealthSystem), Evanston, IL, USA
| |
Collapse
|
3
|
Vanmaele A, Bouwens E, Hoeks SE, Kindt A, Lamont L, Fioole B, Moelker A, Ten Raa S, Hussain B, Oliveira-Pinto J, Ijpma AS, van Lier F, Akkerhuis KM, Majoor-Krakauer DF, Hankemeier T, de Rijke Y, Verhagen HJ, Boersma E, Kardys I. Targeted proteomics and metabolomics for biomarker discovery in abdominal aortic aneurysm and post-EVAR sac volume. Clin Chim Acta 2024; 554:117786. [PMID: 38246209 DOI: 10.1016/j.cca.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) patients undergo uniform surveillance programs both leading up to, and following surgery. Circulating biomarkers could play a pivotal role in individualizing surveillance. We applied a multi-omics approach to identify relevant biomarkers and gain pathophysiological insights. MATERIALS AND METHODS In this cross-sectional study, 108 AAA patients and 200 post-endovascular aneurysm repair (post-EVAR) patients were separately investigated. We performed partial least squares regression and ingenuity pathway analysis on circulating concentrations of 96 proteins (92 Olink Cardiovascular-III panel, 4 ELISA-assays) and 199 metabolites (measured by LC-TQMS), and their associations with CT-based AAA/sac volume. RESULTS The median (25th-75th percentile) maximal diameter was 50.0 mm (46.0, 53.0) in the AAA group, and 55.4 mm (45.0, 64.2) in the post-EVAR group. Correcting for clinical characteristics in AAA patients, the aneurysm volume Z-score differed 0.068 (95 %CI: (0.042, 0.093)), 0.066 (0.047, 0.085) and -0.051 (-0.064, -0.038) per Z-score valine, leucine and uPA, respectively. After correcting for clinical characteristics and orthogonalization in the post-EVAR group, the sac volume Z-score differed 0.049 (0.034, 0.063) per Z-score TIMP-4, -0.050 (-0.064, -0.037) per Z-score LDL-receptor, -0.051 (-0.062, -0.040) per Z-score 1-OG/2-OG and -0.056 (-0.066, -0.045) per Z-score 1-LG/2-LG. CONCLUSIONS The branched-chain amino acids and uPA were related to AAA volume. For post-EVAR patients, LDL-receptor, monoacylglycerols and TIMP-4 are potential biomarkers for sac volume. Additionally, distinct markers for sac change were identified.
Collapse
Affiliation(s)
- Alexander Vanmaele
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Elke Bouwens
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands; Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - Sanne E Hoeks
- Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Lieke Lamont
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Bram Fioole
- Department of Vascular Surgery, Maasstad Hospital, Rotterdam, the Netherlands
| | - Adriaan Moelker
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Sander Ten Raa
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Burhan Hussain
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands; Department of Radiology, Beatrix hospital, Gorinchem, the Netherlands
| | - José Oliveira-Pinto
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands; Department of Angiology and Vascular Surgery, Centro Hospitalar São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Oporto, Porto, Portugal
| | - Arne S Ijpma
- Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Felix van Lier
- Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | | | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Yolanda de Rijke
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, the Netherlands
| | - Hence Jm Verhagen
- Department of Vascular Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Centre, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Davis FM, Tsoi LC, Ma F, Wasikowski R, Moore BB, Kunkel SL, Gudjonsson JE, Gallagher KA. Single-cell Transcriptomics Reveals Dynamic Role of Smooth Muscle Cells and Enrichment of Immune Cell Subsets in Human Abdominal Aortic Aneurysms. Ann Surg 2022; 276:511-521. [PMID: 35762613 PMCID: PMC9388616 DOI: 10.1097/sla.0000000000005551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine cell-specific gene expression profiles that contribute to development of abdominal aortic aneurysms (AAAs). BACKGROUND AAAs represent the most common pathological aortic dilation leading to the fatal consequence of aortic rupture. Both immune and structural cells contribute to aortic degeneration, however, gene specific alterations in these cellular subsets are poorly understood. METHODS We performed single-cell RNA sequencing (scRNA-seq) analysis of AAAs and control tissues. AAA-related changes were examined by comparing gene expression profiles as well as detailed receptor-ligand interactions. An integrative analysis of scRNA-seq data with large genome-wide association study data was conducted to identify genes critical for AAA development. RESULTS Using scRNA-seq we provide the first comprehensive characterization of the cellular landscape in human AAA tissues. Unbiased clustering analysis of transcriptional profiles identified seventeen clusters representing 8 cell lineages. For immune cells, clustering analysis identified 4 T-cell and 5 monocyte/macrophage subpopulations, with distinct transcriptional profiles in AAAs compared to controls. Gene enrichment analysis on immune subsets identified multiple pathways only expressed in AAA tissue, including those involved in mitochondrial dysfunction, proliferation, and cytokine secretion. Moreover, receptor-ligand analysis defined robust interactions between vascular smooth muscle cells and myeloid populations in AAA tissues. Lastly, integrated analysis of scRNA-seq data with genome-wide association study studies determined that vascular smooth muscle cell expression of SORT1 is critical for maintaining normal aortic wall function. CONCLUSIONS Here we provide the first comprehensive evaluation of single-cell composition of the abdominal aortic wall and reveal how the gene expression landscape is altered in human AAAs.
Collapse
Affiliation(s)
- Frank M. Davis
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
- Department of Computation Medicine University of Michigan, Ann Arbor, MI
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine at University of California (UCLA), Los Angeles, California
| | | | - Bethany B. Moore
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
Chin W, Chan J, Tarkas TN, Meharban N, Munir W, Bashir M. The association of ANRIL with coronary artery disease and aortic aneurysms, how far does the gene desert go? Ann Vasc Surg 2021; 80:345-357. [PMID: 34780941 DOI: 10.1016/j.avsg.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) and aortic aneurysms (AA) are two cardiovascular diseases that share a multifactorial aetiology. The influence of family history and genetics on the two diseases separately and in association is well known, but poorly elucidated. This comprehensive review aims to examine the current literature on the gene ANRIL (antisense non-coding RNA in the INK4 locus) and its associations with CAD and AA. METHODS A database search on OVID, PubMed and Cochrane to identify articles concerning single nucleotide polymorphisms (SNPs) associated with ANRIL and their respective incidences of, and impact on, CAD and AA across populations. RESULTS Cohort studies across various ethnicities reveal that various ANRIL SNPs are significantly associated separately with CAD (rs1333040, rs1333049 and rs2383207) and AA (rs564398, rs10757278 and rs1333049), and that these SNPs are present in significant proportions of the population. SNP rs1333049 is significantly associated with both diseases, but is positively correlated with AAA and negatively correlated with CAD. This review further outlines several pathophysiological links via endothelial and adventitial cells, vascular smooth muscle cells and sense gene interaction, which may explain these genetic associations identified. CONCLUSION Given the associations uncovered between ANRIL polymorphisms and CAD and AA, as well as the molecular mechanisms which may explain the underlying pathophysiology, ANRIL appears to be strongly linked with both diseases. ANRIL may hence have a future application in screening normal patients and risk stratifying patients with both diseases. Its role in linking the two diseases is yet unclear, warranting further studies.
Collapse
Affiliation(s)
- Wei Chin
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AD, United Kingdom
| | - Jeremy Chan
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AD, United Kingdom
| | - Tillana Nirav Tarkas
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AD, United Kingdom
| | - Nehman Meharban
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AD, United Kingdom
| | - Wahaj Munir
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AD, United Kingdom
| | - Mohamad Bashir
- Vascular & Endovascular Surgery, Velindre University Hospital NHS Trust, Health & Education Improvement Wales, Cardiff, CF15 7QZ, United Kingdom.
| |
Collapse
|
6
|
Zhang H, Geng N, Sun L, Che X, Xiao Q, Tao Z, Chen L, Lyu Y, Shao Q, Pu J. Nuclear Receptor Nur77 Protects Against Abdominal Aortic Aneurysm by Ameliorating Inflammation Via Suppressing LOX-1. J Am Heart Assoc 2021; 10:e021707. [PMID: 34325521 PMCID: PMC8475661 DOI: 10.1161/jaha.121.021707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Abdominal aortic aneurysm (AAA) is a life-threatening vascular disorder characterized by chronic inflammation of the aortic wall, which lacks effective pharmacotherapeutic remedies and has an extremely high mortality. Nuclear receptor NR4A1 (Nur77) functions in various chronic inflammatory diseases. However, the influence of Nur77 on AAA has remained unclear. Herein, we sought to determine the effects of Nur77 on the development of AAA. Methods and Results We observed that Nur77 expression decreased significantly in human and mice AAA lesions. Deletion of Nur77 accelerated the development of AAA in mice, as evidenced by increased AAA incidence, abdominal aortic diameters, elastin fragmentation, and collagen content. Consistent with genetic manipulation, pharmacological activation of Nur77 by celastrol showed beneficial effects against AAA. Microscopic and molecular analyses indicated that the detrimental effects of Nur77 deficiency were associated with aggravated macrophage infiltration in AAA lesions and increased pro-inflammatory cytokines secretion and matrix metalloproteinase (MMP-9) expression. Bioinformatics analyses further revealed that LOX-1 was upregulated by Nur77 deficiency and consequently increased the expression of cytokines and MMP-9. Moreover, rescue experiments verified that LOX-1 notably aggravated inflammatory response, an effect that was blunted by Nur77. Conclusions This study firstly demonstrated a crucial role of Nur77 in the formation of AAA by targeting LOX-1, which implicated Nur77 might be a potential therapeutic target for AAA.
Collapse
Affiliation(s)
- Hengyuan Zhang
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Na Geng
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Lingyue Sun
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Xinyu Che
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Qingqing Xiao
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Zhenyu Tao
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Long Chen
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Yuyan Lyu
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Qin Shao
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| | - Jun Pu
- Department of Cardiology Renji HospitalSchool of Medicine, Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
7
|
Systematic review of genome-wide association studies of abdominal aortic aneurysm. Atherosclerosis 2021; 327:39-48. [PMID: 34038762 DOI: 10.1016/j.atherosclerosis.2021.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) is an important cause of death worldwide and has an estimated heritability between 70 and 77%. Genome-wide association studies (GWAS) are an established way to discover genetic risk variants. The aim of this study was to systematically review the findings and quality of previous AAA GWAS. METHODS The Medline, PubMed, Web of Science and relevant genetic databases were searched to identify previous AAA GWAS. A framework was developed to grade the methodological quality of the GWAS. Data from included studies were extracted to assess methods and findings. RESULTS Eight case-control studies were included. Thirty-three of the 38 total single nucleotide polymorphisms (SNPs) previously reported were associated with AAA diagnosis at genome-wide significance (p < 5.0 × 10-8). The CDKN2B antisense RNA-1 gene had the most significant association with AAA diagnosis (p = 6.94 × 10-29 and p = 1.54 × 10-33 for rs4007642 and rs10757274 respectively). Age, sex and smoking history were not reported for the complete cohort in any of the included studies, although five of the eight studies adjusted or matched for at least two confounding variables. All included studies had important design limitations including lack of sample size estimation, inconsistent case and control ascertainment and limited phenotyping of the AAAs. AAA growth was assessed in one GWAS, however, no significant associations with the reported SNPs were found. CONCLUSIONS This systematic review identified 33 SNPs associated with AAA diagnosis at genome-wide significance previously validated in multiple cohorts. The association between SNPs and AAA growth was not adequately examined. Previous GWAS have a number of design limitations.
Collapse
|
8
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Kołodziej P, Szymańska J, Płachno BJ, Zubilewicz T, Feldo M, Kocki J, Bogucka-Kocka A. Identification of Transcriptomic Differences between Lower Extremities Arterial Disease, Abdominal Aortic Aneurysm and Chronic Venous Disease in Peripheral Blood Mononuclear Cells Specimens. Int J Mol Sci 2021; 22:3200. [PMID: 33801150 PMCID: PMC8004090 DOI: 10.3390/ijms22063200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
Several human tissues are investigated in studies of molecular biomarkers associated with diseases development. Special attention is focused on the blood and its components due to combining abundant information about systemic responses to pathological processes as well as high accessibility. In the current study, transcriptome profiles of peripheral blood mononuclear cells (PBMCs) were used to compare differentially expressed genes between patients with lower extremities arterial disease (LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD). Gene expression patterns were generated using the Ion S5XL next-generation sequencing platform and were analyzed using DESeq2 and UVE-PLS methods implemented in R programming software. In direct pairwise analysis, 21, 58 and 10 differentially expressed genes were selected from the comparison of LEAD vs. AAA, LEAD vs. CVD and AAA vs. CVD patient groups, respectively. Relationships between expression of dysregulated genes and age, body mass index, creatinine levels, hypertension and medication were identified using Spearman rank correlation test and two-sided Mann-Whitney U test. The functional analysis, performed using DAVID website tool, provides potential implications of selected genes in pathological processes underlying diseases studied. Presented research provides new insight into differences of pathogenesis in LEAD, AAA and CVD, and selected genes could be considered as potential candidates for biomarkers useful in diagnosis and differentiation of studied diseases.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Karol P. Ruszel
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Jacek Bogucki
- Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Przemysław Kołodziej
- Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Jolanta Szymańska
- Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, 6 Chodźki St., 20-093 Lublin, Poland;
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland;
| | - Tomasz Zubilewicz
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
9
|
Moran CS, Biros E, Krishna SM, Morton SK, Sexton DJ, Golledge J. Kallikrein-1 Blockade Inhibits Aortic Expansion in a Mouse Model and Reduces Prostaglandin E2 Secretion From Human Aortic Aneurysm Explants. J Am Heart Assoc 2021; 10:e019372. [PMID: 33599139 PMCID: PMC8174241 DOI: 10.1161/jaha.120.019372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) is an important cause of mortality in older adults. The kinin B2 receptor agonist, bradykinin, has been implicated in AAA pathogenesis through promoting inflammation. Bradykinin is generated from high- and low-molecular-weight kininogen by the serine protease kallikrein-1. The aims of this study were first to examine the effect of neutralizing kallikrein-1 on AAA development in a mouse model and second to test how blocking kallikrein-1 affected cyclooxygenase-2 and prostaglandin E2 in human AAA explants. Methods and Results Neutralization of kallikrein-1 in apolipoprotein E-deficient (ApoE-/-) mice via administration of a blocking antibody inhibited suprarenal aorta expansion in response to angiotensin (Ang) II infusion. Kallikrein-1 neutralization decreased suprarenal aorta concentrations of bradykinin and prostaglandin E2 and reduced cyclooxygenase-2 activity. Kallikrein-1 neutralization also decreased protein kinase B and extracellular signal-regulated kinase 1/2 phosphorylation and reduced levels of active matrix metalloproteinase 2 and matrix metalloproteinase 9. Kallikrein-1 blocking antibody reduced levels of cyclooxygenase-2 and secretion of prostaglandin E2 and active matrix metalloproteinase 2 and matrix metalloproteinase 9 from human AAA explants and vascular smooth muscle cells exposed to activated neutrophils. Conclusions These findings suggest that kallikrein-1 neutralization could be a treatment target for AAA.
Collapse
Affiliation(s)
- Corey S Moran
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | - Erik Biros
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | - Smriti M Krishna
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | - Susan K Morton
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | | | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia.,Department of Vascular and Endovascular Surgery Townsville University Hospital Townsville Australia
| |
Collapse
|
10
|
Yap ZJ, Sharif M, Bashir M. Is there an immunogenomic difference between thoracic and abdominal aortic aneurysms? J Card Surg 2021; 36:1520-1530. [PMID: 33604952 DOI: 10.1111/jocs.15440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIM Aortic aneurysms most commonly occur in the infra-renal and proximal thoracic regions. While generally asymptomatic, progressive aneurysmal dilation can become rapidly lethal when dissection or ruptures occurs, highlighting the need for more robust screening. Abdominal aortic aneurysm (AAA) is more prevalent compared to thoracic aortic aneurysm (TAA). The true incidence of TAA is underreported due to the absence of population screening and the silent nature of TAA. To achieve the optimum survival rate in aortic aneurysms, knowledge of natural course, genetic association, and surgical results are needed to be applied with adequate medical treatment and careful selection of patients for operation. The purpose of this paper is to provide a comprehensive review of the literature on natural history, immunology, and genetic differences between thoracic and AAAs. METHOD The literature was collected from OVID, SCOPUS, and PubMed. RESULTS (1) AAA expands faster than TAA. AAA expands at approximately 0.3-0.45 cm annually, depending on various factors (advancing age, diameter of aorta, smoking etc.). TAA expands up to 0.3 cm annually in a non-bicuspid aortic valve patient. (2) An increase in Matrix metallopeptidase 1, 2, 9, 12, 14 led to degrading extracellular matrix of the aortic vessel wall. This significantly contributed to the pathogenesis in AAA, whereas overactive Transforming growth factor-beta played a major role in the pathogenesis of TAA. CONCLUSION In the future, genetic testing may be the gold standard for tackling the geneticheterogeneity of aneurysms, therefore, identifying at-risk individuals developing TAA andAAA earlier.
Collapse
Affiliation(s)
- Zhi Jiun Yap
- Department of Anaesthetic, Dorset County Hospital, Dorset, England
| | - Monira Sharif
- Department of Molecular & Clinical Medicine, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Mohamad Bashir
- Department of Emergency Medicine and Surgery, Royal Blackburn Teaching Hospital, Blackburn, England
| |
Collapse
|
11
|
Giannopoulos S, Kokkinidis DG, Avgerinos ED, Armstrong EJ. Association of Abdominal Aortic Aneurysm and Simple Renal Cysts: A Systematic Review and Meta-Analysis. Ann Vasc Surg 2021; 74:450-459. [PMID: 33556506 DOI: 10.1016/j.avsg.2021.01.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND-OBJECTIVE Prior studies have suggested a higher prevalence of simple renal cysts (SRC) among patients with aortic disease, including abdominal aortic aneurysms (AAA). Thus, the aim of this study was to systematically review all currently available literature and investigate whether patients with AAA are more likely to have SRC. METHODS This study was performed according to the PRISMA guidelines. A meta-analysis was conducted with the use of random effects modeling and the I-square was used to assess heterogeneity. Odds ratios (OR) and the corresponding 95% confidence intervals (CI) were synthesized to compare the prevalence of several patients' characteristics between AAA vs. no-AAA cases. RESULTS Eleven retrospective studies, 9 comparative (AAA vs. no-AAA groups) and 3 single-arm (AAA group), were included in this meta-analysis, enrolling patients (AAA: N = 2,297 vs. no-AAA: N = 35,873) who underwent computed tomography angiography as part of screening or preoperative evaluation for reasons other than AAA. The cumulative incidence of SRC among patients with AAA and no-AAA was 55% (95% CI: 49%-61%) and 32% (95% CI: 22%-42%) respectively, with a statistically higher odds of SRC among patients with AAA (OR: 3.02; 95% CI: 2.01-4.56; P< 0.001). The difference in SRC prevalence remained statistically significant in a sensitivity analysis, after excluding the study with the largest sample size (OR: 2.71; 95% CI: 1.91-3.84; P< 0.001). CONCLUSIONS Our meta-analysis demonstrated a 3-fold increased prevalence of SRC in patients with AAA compared to no-AAA cases, indicating that the pathogenic processes underlying SRC and AAA could share a common pathophysiologic mechanism. Thus, patients with SRC could be considered at high risk for AAA formation, potentially warranting an earlier AAA screening.
Collapse
Affiliation(s)
- Stefanos Giannopoulos
- Division of Cardiology, Rocky Mountain Regional VA Medical Center, University of Colorado, Denver, CO
| | | | - Efthymios D Avgerinos
- Division of Vascular Surgery, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ehrin J Armstrong
- Division of Cardiology, Rocky Mountain Regional VA Medical Center, University of Colorado, Denver, CO.
| |
Collapse
|
12
|
Legaki E, Siasos G, Klonaris C, Athanasiadis D, Patelis N, Sioziou A, Oikonomou E, Liakakos T, Gazouli M, Tousoulis D. Mir-335-5p as a potential regulator of LRP1 expression in abdominal aortic aneurysm. Hellenic J Cardiol 2020; 61:430-432. [PMID: 32088330 DOI: 10.1016/j.hjc.2020.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/21/2019] [Accepted: 01/18/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Evangelia Legaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- First Department of Cardiology, National and Kapodistrian University of Athens Hippokration General Hospital, Athens, Greece.
| | - Christos Klonaris
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Dimitrios Athanasiadis
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Nikolaos Patelis
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Anna Sioziou
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Oikonomou
- First Department of Cardiology, National and Kapodistrian University of Athens Hippokration General Hospital, Athens, Greece
| | - Theodoros Liakakos
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, National and Kapodistrian University of Athens Hippokration General Hospital, Athens, Greece
| |
Collapse
|
13
|
Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Int J Mol Sci 2020; 21:ijms21176334. [PMID: 32878347 PMCID: PMC7504666 DOI: 10.3390/ijms21176334] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.
Collapse
Affiliation(s)
- Rijan Gurung
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Andrew Mark Choong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
14
|
Golledge J, Moxon JV, Singh TP, Bown MJ, Mani K, Wanhainen A. Lack of an effective drug therapy for abdominal aortic aneurysm. J Intern Med 2020; 288:6-22. [PMID: 31278799 DOI: 10.1111/joim.12958] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abdominal aortic aneurysm (AAA) rupture is a common cause of death in adults. Current AAA treatment is by open surgical or endovascular aneurysm repair. Rodent model and human epidemiology, and genetic and observational studies over the last few decades have highlighted the potential of a number of drug therapies, including medications that lower blood pressure, correct dyslipidaemia, or inhibit thrombosis, inflammation or matrix remodelling, as approaches to managing small AAA. This review summarizes prior AAA pathogenesis data from animal and human studies aimed at identifying targets for the development of drug therapies. The review also systematically assesses past randomized placebo-controlled drug trials in patients with small AAAs. Eleven previously published randomized-controlled clinical trials testing different drug therapies aimed at slowing AAA progression were identified. Five of the trials tested antibiotics and three trials assessed medications that lower blood pressure. Meta-analyses of these trials suggested that neither of these approaches limit AAA growth. Allocation to blood pressure-lowering medication was associated with a small reduction in AAA rupture or repair, compared to placebo (relative risk 0.94, 95% confidence intervals 0.89, 1.00, P = 0.047). Three further trials assessed the effect of a mast cell inhibitor, fibrate or platelet aggregation inhibition and reported no effect on AAA growth or clinical events. Past trials were noted to have a number of design issues, particularly small sample sizes and limited follow-up. Much larger trials are needed to properly test potential therapeutic approaches if a convincingly effective medical therapy for AAA is to be identified.
Collapse
Affiliation(s)
- J Golledge
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Qld, Australia.,Centre for Molecular Therapeutics, The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | - J V Moxon
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,Centre for Molecular Therapeutics, The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | - T P Singh
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Qld, Australia
| | - M J Bown
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - K Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - A Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Komsta Ł, Kołodziej P, Chmiel P, Zubilewicz T, Feldo M, Kocki J, Bogucka-Kocka A. Dysregulation of microRNA Modulatory Network in Abdominal Aortic Aneurysm. J Clin Med 2020; 9:jcm9061974. [PMID: 32599769 PMCID: PMC7355415 DOI: 10.3390/jcm9061974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Abdominal artery aneurysm (AAA) refers to abdominal aortic dilatation of 3 cm or greater. AAA is frequently underdiagnosed due to often asymptomatic character of the disease, leading to elevated mortality due to aneurysm rupture. MiRNA constitute a pool of small RNAs controlling gene expression and is involved in many pathologic conditions in human. Targeted panel detecting altered expression of miRNA and genes involved in AAA would improve early diagnosis of this disease. In the presented study, we selected and analyzed miRNA and gene expression signatures in AAA patients. Next, generation sequencing was applied to obtain miRNA and gene-wide expression profiles from peripheral blood mononuclear cells in individuals with AAA and healthy controls. Differential expression analysis was performed using DESeq2 and uninformative variable elimination by partial least squares (UVE-PLS) methods. A total of 31 miRNAs and 51 genes were selected as the most promising biomarkers of AAA. Receiver operating characteristics (ROC) analysis showed good diagnostic ability of proposed biomarkers. Genes regulated by selected miRNAs were determined in silico and associated with functional terms closely related to cardiovascular and neurological diseases. Proposed biomarkers may be used for new diagnostic and therapeutic approaches in management of AAA. The findings will also contribute to the pool of knowledge about miRNA-dependent regulatory mechanisms involved in pathology of that disease.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.C.)
| | - Karol P. Ruszel
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Jacek Bogucki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Łukasz Komsta
- Chair and Department of Medicinal Chemistry, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland;
| | - Przemysław Kołodziej
- Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Paulina Chmiel
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.C.)
| | - Tomasz Zubilewicz
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.C.)
- Correspondence: ; Tel.: +48-81-448-7232
| |
Collapse
|
16
|
Triglyceride/High-Density Lipoprotein Cholesterol Ratio Is Associated with In-Hospital Mortality in Acute Type B Aortic Dissection. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5419846. [PMID: 32337256 PMCID: PMC7168694 DOI: 10.1155/2020/5419846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023]
Abstract
Background Triglyceride/high-density lipoprotein cholesterol (TG/HDL-c) ratio varies with vascular and other metabolic diseases. However, its role in acute type B aortic dissection is not well understood. In the current study, we evaluated the relationship between TG/HDL-c ratio and in-hospital mortality in type B aortic dissection. Methods We performed a retrospective analysis of consecutive patients between January 2015 and December 2018, by targeting dependent (TG/HDL-c ratio) and independent (in-hospital mortality) variables. TG/HDL-c ratio was determined as a division of TG levels by HDL-c levels. Results Of 523 patients in the study, we found a mean age of 55.00 ± 11.74 years, 15.68% of them being female. A fully-adjusted model revealed a positive relationship between TG/HDL-c ratio and in-hospital mortality in acute type B aortic dissection after adjusting confounders (OR = 2.08, 95% CI 1.32 to 3.27). This relationship was also nonlinear, with a point of 2.05. OR values (and confidence intervals) for the right (>2.05) and left (≤2.05) sides of the inflection point were 1.0 (0.580-1.26, P = 0.983) and 3.17 (1.54-6.57, P = 0.001), respectively. Conclusions The TG/HDL-c ratio and in-hospital mortality in type B AAD have a nonlinear relationship among Chinese population. This ratio increased in-hospital mortality when it is less than 2.05.
Collapse
|
17
|
Au DT, Arai AL, Fondrie WE, Muratoglu SC, Strickland DK. Role of the LDL Receptor-Related Protein 1 in Regulating Protease Activity and Signaling Pathways in the Vasculature. Curr Drug Targets 2019; 19:1276-1288. [PMID: 29749311 DOI: 10.2174/1389450119666180511162048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Aortic aneurysms represent a significant clinical problem as they largely go undetected until a rupture occurs. Currently, an understanding of mechanisms leading to aneurysm formation is limited. Numerous studies clearly indicate that vascular smooth muscle cells play a major role in the development and response of the vasculature to hemodynamic changes and defects in these responses can lead to aneurysm formation. The LDL receptor-related protein 1 (LRP1) is major smooth muscle cell receptor that has the capacity to mediate the endocytosis of numerous ligands and to initiate and regulate signaling pathways. Genetic evidence in humans and mouse models reveal a critical role for LRP1 in maintaining the integrity of the vasculature. Understanding the mechanisms by which this is accomplished represents an important area of research, and likely involves LRP1's ability to regulate levels of proteases known to degrade the extracellular matrix as well as its ability to modulate signaling events.
Collapse
Affiliation(s)
- Dianaly T Au
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - Allison L Arai
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - William E Fondrie
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - Selen C Muratoglu
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States
| |
Collapse
|
18
|
Hill HL, Stanley JC, Matusko N, Ganesh SK, Coleman DM. The Association of Intracranial Aneurysms in Women with Renal Artery Aneurysms. Ann Vasc Surg 2019; 60:147-155.e2. [DOI: 10.1016/j.avsg.2019.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/27/2019] [Accepted: 03/19/2019] [Indexed: 10/26/2022]
|
19
|
Huang T, Liu S, Huang J, Xu B, Bai Y, Wang W. Meta-analysis of the growth rates of abdominal aortic aneurysm in the Chinese population. BMC Cardiovasc Disord 2019; 19:204. [PMID: 31438860 PMCID: PMC6704678 DOI: 10.1186/s12872-019-1160-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Background Several studies on the growth rates of abdominal aortic aneurysm (AAA) in Chinese population have been conducted; however, this issue remains unclear. The aim of this study is to systematically review published data of the AAA growth rates among people in China. Methods We conducted a comprehensive search of multiple databases to identify all studies of AAA growth in the Chinese population from inception until June 2017. AAA growth rates were combined to yield the growth rates at specified aneurysm diameter ranges, with using a random-effects model or fixed-effects model according to heterogeneity. Results A total of 8257 studies were initially identified and only 4 studies were eventually included. A random-effects analysis showed that the growth rates of AAA in Chinses population is ranging from 0.18 cm/year to 0.75 cm/year. The pooled mean growth rates among individuals with aneurysm measuring 3.0–3.9 cm, 4.0–5.9 cm and ≧ 6.0 cm in diameter were 0.21 cm/year (95% CI: 0.19 cm/year to 0.23 cm/year), 0.38 cm/year (95% CI: 0.33 cm/year to 0.43 cm/year), and 0.71 cm/year (95% CI: 0.64 cm/year to 0.77 cm/year) respectively. Further analysis found that the pooled mean growth rates for individuals with small AAA (diameters measuring 3.0–4.9 cm) was 0.28 cm/year (95% CI: − 0.06 cm/year to 0.61 cm/year)`and for individuals with large AAA (diameters ≥5.0 cm) was 0.75 cm/year (95% CI: 0.20 cm/year to 1.3 cm/year). Finally, meta-regression showed a strong trend of linear relationship between AAA growth rate and aneurysm diameter. Conclusions The growth rates of AAA in the Chinese population increase with AAA enlargement and appear to range from 0.18 cm/year in the smallest AAAs to 0.75 cm/year when the diameter exceeds 6 cm. However, based on current studies, it is difficult to estimate the accurate average AAA growth rate in Chinese patients. More large-scale, high-quality studies are required to achieve that. Overall, AAA growth rate increase with increased aneurysm diameter. Electronic supplementary material The online version of this article (10.1186/s12872-019-1160-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Vascular Surgery and Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Shuai Liu
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Jianhua Huang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Baohui Xu
- Department of Vascular Surgery, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Yongping Bai
- Department of Cardiology, Xiangya Hospital, Central 27 South University, Changsha, Hunan, China.
| | - Wei Wang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
20
|
Erhart P, Cakmak S, Grond-Ginsbach C, Hakimi M, Böckler D, Dihlmann S. Inflammasome activity in leucocytes decreases with abdominal aortic aneurysm progression. Int J Mol Med 2019; 44:1299-1308. [PMID: 31432101 PMCID: PMC6713432 DOI: 10.3892/ijmm.2019.4307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. The present extended immunohistochemistry study aimed to characterize inflammation in AAA and aortic control samples. In specific, the composition of the infiltrating immune cells and the expression of five inflammasome components in these immune cells were evaluated, in order to characterize their role in AAA development. A total of 104 biopsies from 48 AAA patients and 40 healthy specimens from organ donors were evaluated for their grade of inflammation. Infiltrating leukocytes were characterized by specific markers (CD3, CD20 and CD68), intramural localization and inflammasome protein expression [NLR family pyrin domain containing 3 (NLRP3), absent in melanoma 2 (AIM2), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), Caspase-1 and Caspase-5]. Macrophages, B and T lymphocytes were detected to a similar extent in grade 1, 2 and 3 AAA specimens, whereas in control samples, B and T lymphocytes were rarely observed in grade 1 lesions. Expression frequencies of NLRP3, AIM2 and Caspase-5 were significantly higher in grade 1 lesions of AAA samples compared with grade 1 lesions in control samples. Finally, AIM2, ASC, and Caspase-5 displayed significantly lower expression frequencies in grade 3 compared with grade 2 AAA specimens, and all inflammasome components were less frequently detected in grade 3 than in grade 1 lesions of AAA. This indicates that inflammasome activities decrease with AAA progression in infiltrating leukocytes. No statistically significant association was found for grade 2 and grade 3 lesions and total leukocyte count, C-reactive protein levels, maximal aortic diameter, plasma cholesterol level or biomechanical parameters (derived from finite element analysis) of the respective patients. Overall, the aortic wall of AAA contained lymphocytes and macrophages with different states of activity. The present data suggested that therapeutic inhibition of specific inflammasome components might counteract AAA development and progression.
Collapse
Affiliation(s)
- Philipp Erhart
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Sinan Cakmak
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | | | - Maani Hakimi
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Susanne Dihlmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
21
|
Legaki E, Klonaris C, Athanasiadis D, Patelis N, Sioziou A, Liakakos T, Gazouli M. DAB2IP Expression in Abdominal Aortic Aneurysm: EZH2 and mir-363-3p as Potential Mediators. In Vivo 2019; 33:737-742. [PMID: 31028191 PMCID: PMC6559911 DOI: 10.21873/invivo.11533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Nine genetic loci have been associated with abdominal aortic aneurysm (AAA) susceptibility, including DAB2IP. This gene is playing a role in apoptosis, cell proliferation and epithelial-to-mesenchymal transition in cancers. This study aimed to elucidate the differential expression levels of DAB2IP in AAA tissues and investigate whether mir-363-3p and EZH2 can be considered as potential mediators of its expression. MATERIALS AND METHODS 18 AAA samples and 15 non-aneurysmatic controls were collected. Relative mRNA expression levels of DAB2IP, EZH2 and mir-363-3p were measured using qPCR. RESULTS DAB2IP was significant up-regulated (~2.29 fold) in AAA tissues, while EZH2 and mir-363-3p were down-regulated (3.28 and 3.62-fold, respectively). A limited negative correlation was found between the DAB2IP and EZH2 expression and between DAB2IP and the mir-363-3p. CONCLUSION An increased expression of DAB2IP in AAA tissues was shown. We suggest 2 potential mediators of DAB2IP expression in abdominal aortic aneurysm, EZH2 and mir-363-3p.
Collapse
Affiliation(s)
- Evangelia Legaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Klonaris
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Dimitrios Athanasiadis
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Nikolaos Patelis
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Anna Sioziou
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Liakakos
- First Department of Surgery, Vascular Unit, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Itoga NK, Rothenberg KA, Suarez P, Ho TV, Mell MW, Xu B, Curtin CM, Dalman RL. Metformin prescription status and abdominal aortic aneurysm disease progression in the U.S. veteran population. J Vasc Surg 2019; 69:710-716.e3. [PMID: 30197158 PMCID: PMC6706071 DOI: 10.1016/j.jvs.2018.06.194] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/08/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Identification of a safe and effective medical therapy for abdominal aortic aneurysm (AAA) disease remains a significant unmet medical need. Recent small cohort studies indicate that metformin, the world's most commonly prescribed oral hypoglycemic agent, may limit AAA enlargement. We sought to validate these preliminary observations in a larger cohort. METHODS All patients with asymptomatic AAA disease managed in the Veterans Affairs Health Care System between 2003 and 2013 were identified by International Classification of Diseases, Ninth Revision codes. Those with a concomitant diagnosis of diabetes mellitus who also received two or more abdominal imaging studies (computed tomography, magnetic resonance imaging, or ultrasound) documenting the presence and size of an AAA, separated by at least 1 year, were included for review. Maximal AAA diameters were determined from radiologic reports. Further data acquisition was censored after surgical AAA repair, when performed. Comorbidities, active smoking status, and outpatient medication records (within 6 months of AAA diagnosis) were also queried. Yearly AAA enlargement rates, as a function of metformin treatment status, were compared using two statistical models expressed in millimeters per year: a multivariate linear regression (model 1) and a multivariate mixed-effects model with random intercept and random slope (model 2). RESULTS A total of 13,834 patients with 58,833 radiographic records were included in the analysis, with radiology imaging follow-up of 4.2 ± 2.6 years (mean ± standard deviation). The average age of the patients at AAA diagnosis was 69.8 ± 7.8 years, and 39.7% had a metformin prescription within ±6 months of AAA. The mean growth rate for AAAs in the entire cohort was 1.4 ± 2.0 mm/y by model 1 analysis and 1.3 ± 1.6 mm/y by model 2 analysis. The unadjusted mean rate of AAA growth was 1.2 ± 1.9 mm/y for patients prescribed metformin compared with 1.5 ± 2.2 mm/y for those without (P < .001), a 20% decrease. This effect remained significant when adjusted for variables relevant on AAA progression: metformin prescription was associated with a reduction in yearly AAA growth rate of -0.23 mm (95% confidence interval, -0.35 to -0.16; P < .001) by model 1 analysis and 0.20 mm/y (95% confidence interval, -0.26 to -0.14; P < .001) by model 2 analysis. A subset analysis of 7462 patients with baseline AAA size of 35 to 49 mm showed a similar inhibitory effect (1.4 ± 2.0 mm/y to 1.7 ± 2.2 mm/y; P < .001). Patients' factors associated with an increased yearly AAA growth rate were baseline AAA size, metastatic solid tumors, active smoking, chronic obstructive pulmonary disease, and chronic renal disease. Factors associated with decreased yearly AAA growth rates included prescriptions for angiotensin II type 1 receptor blockers or sulfonylureas and the presence of diabetes-related complications. CONCLUSIONS In a nationwide analysis of diabetic Veterans Affairs patients, prescription for metformin was associated with decreased AAA enlargement. These findings provide further support for the conduct of prospective clinical trials to test the ability of metformin to limit progression of early AAA disease.
Collapse
Affiliation(s)
- Nathan K Itoga
- Department of Surgery, Stanford University, Stanford, Calif
| | - Kara A Rothenberg
- Department of Surgery, Stanford University, Stanford, Calif; Department of Surgery, UCSF-East Bay, Oakland, Calif
| | - Paola Suarez
- Department of Surgery, Stanford University, Stanford, Calif; VA Palo Alto Health Care System, Palo Alto, Calif
| | - Thuy-Vy Ho
- Department of Surgery, Stanford University, Stanford, Calif
| | - Matthew W Mell
- Department of Surgery, Stanford University, Stanford, Calif
| | - Baohui Xu
- Department of Surgery, Stanford University, Stanford, Calif
| | - Catherine M Curtin
- Department of Surgery, Stanford University, Stanford, Calif; VA Palo Alto Health Care System, Palo Alto, Calif
| | - Ronald L Dalman
- Department of Surgery, Stanford University, Stanford, Calif.
| |
Collapse
|
23
|
Hultgren R, Linné A, Svensjö S. Cost-effectiveness of targeted screening for abdominal aortic aneurysm in siblings. Br J Surg 2019; 106:206-216. [PMID: 30702746 DOI: 10.1002/bjs.11047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
Background Population screening for abdominal aortic aneurysm (AAA) in 65‐year‐old men has been shown to be cost‐effective. A risk group with higher prevalence is siblings of patients with an AAA. This health economic model‐based study evaluated the potential cost‐effectiveness of targeted AAA screening of siblings. Methods A Markov model validated against other screening programmes was used. Two methods of identifying siblings were analysed: direct questioning of patients with an AAA (method A), and employing a national multigeneration register (method B). The prevalence was based on observed ultrasound data on AAAs in siblings. Additional parameters were extracted from RCTs, vascular registers, literature and ongoing screening. The outcome was cost‐effectiveness, probability of cost‐effectiveness at different willingness‐to‐pay (WTP) thresholds, reduction in AAA death, quality‐adjusted life‐years (QALYs) gained and total costs on a national scale. Results Methods A and B were estimated to reduce mortality from AAA, at incremental cost‐effectiveness ratios of €7800 (95 per cent c.i. 4627 to 12 982) and €7666 (5000 to 13 373) per QALY respectively. The probability of cost‐effectiveness was 99 per cent at a WTP of €23 000. The absolute risk reduction in AAA deaths was five per 1000 invited. QALYs gained were 27 per 1000 invited. In a population of ten million, methods A and B were estimated to prevent 12 and 17 AAA deaths, among 2418 and 3572 siblings identified annually, at total costs of €499 500 and €728 700 respectively. Conclusion The analysis indicates that aneurysm‐related mortality could be decreased cost‐effectively by applying a targeted screening method for siblings of patients with an AAA.
Collapse
Affiliation(s)
- R Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - A Linné
- Section of Vascular Surgery, Department of Surgery, Department of Clinical Science and Education, Karolinska Institutet at Södersjukhuset, Stockholm, Sweden
| | - S Svensjö
- Department of Vascular Surgery, Falun County Hospital, Falun, Sweden.,Centre for Clinical Research, Falun, Sweden.,Department of Surgical Sciences, Section of Vascular Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
|
25
|
Inhibition of miR-155 attenuates abdominal aortic aneurysm in mice by regulating macrophage-mediated inflammation. Biosci Rep 2018; 38:BSR20171432. [PMID: 29459426 PMCID: PMC5938419 DOI: 10.1042/bsr20171432] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to identify abdominal aortic aneurysms (AAA)-associated miR-155 contributing to AAA pathology by regulating macrophage-mediated inflammation. Angiotensin II (AngII)-infused apolipoprotein E-deficient (ApoE-/-) mice and THP-1 cells model of miR-155 overexpression and deficiency were used in the experiments. The expression of miR-155 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cytokines were evaluated using enzyme-linked immunoabsorbent assay (ELISA). Western blotting was used to measure the levels of MMP-2, MMP-9, iNOS, and monocyte chemoattractant protein (MCP)-1 proteins. Immunostaining and transwell were used to determine CD68, elastic collagen, proliferation, and migration of vascular smooth muscle cells (VSMCs). The results showed that miR-155 and cytokines were up-regulated in AAA patients or ApoE-/- mice. Overexpression of miR-155 enhanced MMP-2, MMP-9, iNOS, and MCP-1 levels, and stimulated the proliferation and migration of VSMCs. Meanwhile, inhibition of miR-155 had the opposite effect. In addition, histology demonstrated accumulation of CD68 and elastic collagen-positive areas significantly decreased in miR-155 antagomir injection group. In conclusion, the results of the present study suggest that inhibiting miR-155 is crucial to prevent the development of AAA by regulating macrophage inflammation.
Collapse
|
26
|
Evaluation of the relationship between plasma lipids and abdominal aortic aneurysm: A Mendelian randomization study. PLoS One 2018; 13:e0195719. [PMID: 29649275 PMCID: PMC5896990 DOI: 10.1371/journal.pone.0195719] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/28/2018] [Indexed: 11/21/2022] Open
Abstract
Studies have reported that higher circulating levels of total cholesterol (TC), low-density lipoprotein (LDL) cholesterol and lower of high-density lipoprotein (HDL) cholesterol may be associated with increased risk of abdominal aortic aneurysm (AAA). Whether dyslipidemia causes AAA is still unclear and is potentially testable using a Mendelian randomization (MR) approach. We investigated the associations between blood lipids and AAA using two-sample MR analysis with SNP-lipids association estimates from a published genome-wide association study of blood lipids (n = 188,577) and SNP-AAA association estimates from European Americans (EAs) of the Atherosclerosis Risk in Communities (ARIC) study (n = 8,793). We used inverse variance weighted (IVW) MR as the primary method and MR-Egger regression and weighted median MR estimation as sensitivity analyses. Over a median of 22.7 years of follow-up, 338 of 8,793 ARIC participants experienced incident clinical AAA. Using the IVW method, we observed positive associations of plasma LDL cholesterol and TC with the risk of AAA (odds ratio (OR) = 1.55, P = 0.02 for LDL cholesterol and OR = 1.61, P = 0.01 for TC per 1 standard deviation of lipid increment). Using the MR-Egger regression and weighted median methods, we were able to validate the association of AAA risk with TC, although the associations were less consistent for LDL cholesterol due to wider confidence intervals. Triglycerides and HDL cholesterol were not associated with AAA in any of the MR methods. Assuming instrumental variable assumptions are satisfied, our finding suggests that higher plasma TC and LDL cholesterol are causally associated with the increased risk of AAA in EAs.
Collapse
|
27
|
The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg 2018; 67:2-77.e2. [DOI: 10.1016/j.jvs.2017.10.044] [Citation(s) in RCA: 1150] [Impact Index Per Article: 164.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
The Light and Shadow of Senescence and Inflammation in Cardiovascular Pathology and Regenerative Medicine. Mediators Inflamm 2017; 2017:7953486. [PMID: 29118467 PMCID: PMC5651105 DOI: 10.1155/2017/7953486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiologic studies evidence a dramatic increase of cardiovascular diseases, especially associated with the aging of the world population. During aging, the progressive impairment of the cardiovascular functions results from the compromised tissue abilities to protect the heart against stress. At the molecular level, in fact, a gradual weakening of the cellular processes regulating cardiovascular homeostasis occurs in aging cells. Atherosclerosis and heart failure are particularly correlated with aging-related cardiovascular senescence, that is, the inability of cells to progress in the mitotic program until completion of cytokinesis. In this review, we explore the intrinsic and extrinsic causes of cellular senescence and their role in the onset of these cardiovascular pathologies. Additionally, we dissect the effects of aging on the cardiac endogenous and exogenous reservoirs of stem cells. Finally, we offer an overview on the strategies of regenerative medicine that have been advanced in the quest for heart rejuvenation.
Collapse
|
29
|
The research on association of copy number variation in chromosome 9p21 region with atherothrombotic stroke in the Han Chinese population. J Neurol Sci 2017; 377:88-94. [PMID: 28477716 DOI: 10.1016/j.jns.2017.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/01/2017] [Accepted: 04/03/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND/PURPOSE The copy number variants (CNVs) contain more genetic information compared with SNPs. The aim of this study was to elucidate whether the CNVs in Chromosome 9p21 region are associated with increased risk of Atherothrombotic stroke (ATS) in a Han Chinese population. METHODS A case-controlled association study was conducted in which only patients with ATS were enrolled. The CNVs were detected by the method of multiplex competitive amplification. The differences in distribution of CNVs between cases and controls were analyzed using univariate and multivariate logistic regression analysis. Subgroup analyses were also carried out to determine whether the effect of the CNVs was specific to age and gender among the subjects. RESULTS A total of 274 ATS patients and 282 health controls were included in the present study. 4 genes (ANRIL, CDKN2A, CDKN2B, and MTAP) including eight gene fragments in all were analyzed for CNV. The results showed that the copied number of most CNV in the 4 genes is two. There was no significant difference of CNV frequency between groups. CONCLUSIONS The obtained data suggested a negative association between CNV of the four genes and ATS. It is necessary to perform sequencing analyses across the entire 9p21 region for detecting rare or uncommon CNV.
Collapse
|
30
|
Krishna SM, Seto SW, Jose R, Li J, Moxon J, Clancy P, Crossman DJ, Norman P, Emeto TI, Golledge J. High serum thrombospondin-1 concentration is associated with slower abdominal aortic aneurysm growth and deficiency of thrombospondin-1 promotes angiotensin II induced aortic aneurysm in mice. Clin Sci (Lond) 2017; 131:1261-1281. [PMID: 28364044 DOI: 10.1042/cs20160970] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 12/16/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common age-related vascular disease characterized by progressive weakening and dilatation of the aortic wall. Thrombospondin-1 (TSP-1; gene Thbs1) is a member of the matricellular protein family important in the control of extracellular matrix (ECM) remodelling. In the present study, the association of serum TSP-1 concentration with AAA progression was assessed in 276 men that underwent repeated ultrasound for a median 5.5 years. AAA growth was negatively correlated with serum TSP-1 concentration (Spearman's rho -0.129, P=0.033). Men with TSP-1 in the highest quartile had a reduced likelihood of AAA growth greater than median during follow-up (OR: 0.40; 95% confidence interval (CI): 0.19-0.84, P=0.016, adjusted for other risk factors). Immunohistochemical staining for TSP-1 was reduced in AAA body tissues compared with the relatively normal AAA neck. To further assess the role of TSP-1 in AAA initiation and progression, combined TSP-1 and apolipoprotein deficient (Thbs1-/-ApoE-/-, n=20) and control mice (ApoE-/-, n=20) were infused subcutaneously with angiotensin II (AngII) for 28 days. Following AngII infusion, Thbs1-/- ApoE-/- mice had larger AAAs by ultrasound (P=0.024) and ex vivo morphometry measurement (P=0.006). The Thbs1-/-ApoE-/- mice also showed increased elastin filament degradation along with elevated systemic levels and aortic expression of matrix metalloproteinase (MMP)-9. Suprarenal aortic segments and vascular smooth muscle cells (VSMCs) isolated from Thbs1-/-ApoE-/- mice showed reduced collagen 3A1 gene expression. Furthermore, Thbs1-/-ApoE-/- mice had reduced aortic expression of low-density lipoprotein (LDL) receptor-related protein 1. Collectively, findings from the present study suggest that TSP-1 deficiency promotes maladaptive remodelling of the ECM leading to accelerated AAA progression.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/blood
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Biomarkers/blood
- Cells, Cultured
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Disease Models, Animal
- Disease Progression
- Elastin/metabolism
- Genetic Predisposition to Disease
- Humans
- Low Density Lipoprotein Receptor-Related Protein-1
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice, Knockout
- Odds Ratio
- Phenotype
- Proteolysis
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Risk Factors
- Thrombospondin 1/blood
- Thrombospondin 1/deficiency
- Thrombospondin 1/genetics
- Time Factors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Ultrasonography
- Vascular Remodeling
Collapse
Affiliation(s)
- Smriti Murali Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Sai Wang Seto
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
- National Institute of Complementary Medicine (NICM), School of Science and Health, University of Western Sydney, Campbelltown, NSW, Australia
| | - Roby Jose
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Jiaze Li
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Joseph Moxon
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Paula Clancy
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - David J Crossman
- Department of Physiology,Faculty of Medical and Health Sciences, Biophysics and Biophotonics Research Group, The University of Auckland, Auckland, New Zealand
| | - Paul Norman
- School of Surgery, University of Western Australia, Perth, WA 6907, Australia
| | - Theophilus I Emeto
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Australia
| |
Collapse
|
31
|
Iyer V, Rowbotham S, Biros E, Bingley J, Golledge J. A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms. Atherosclerosis 2017; 261:78-89. [DOI: 10.1016/j.atherosclerosis.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/24/2022]
|
32
|
Challenges and opportunities in limiting abdominal aortic aneurysm growth. J Vasc Surg 2017; 65:225-233. [DOI: 10.1016/j.jvs.2016.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022]
|
33
|
Wilson NK, Gould RA, Gallo MacFarlane E, Consortium ML. Pathophysiology of aortic aneurysm: insights from human genetics and mouse models. Pharmacogenomics 2016; 17:2071-2080. [PMID: 27922338 DOI: 10.2217/pgs-2016-0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aneurysms are local dilations of an artery that predispose the vessel to sudden rupture. They are often asymptomatic and undiagnosed, resulting in a high mortality rate. The predisposition to develop thoracic aortic aneurysms is often genetically inherited and associated with syndromes affecting connective tissue homeostasis. This review discusses how elucidation of the genetic causes of syndromic forms of thoracic aortic aneurysm has helped identify pathways that contribute to disease progression, including those activated by TGF-β, angiotensin II and Notch ligands. We also discuss how pharmacological manipulation of these signaling pathways has provided further insight into the mechanism of disease and identified compounds with therapeutic potential in these and related disorders.
Collapse
Affiliation(s)
- Nicole K Wilson
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | | |
Collapse
|
34
|
Zhang Y, Liu Z, Zhou M, Liu C. MicroRNA-129-5p inhibits vascular smooth muscle cell proliferation by targeting Wnt5a. Exp Ther Med 2016; 12:2651-2656. [PMID: 27698769 DOI: 10.3892/etm.2016.3672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/28/2016] [Indexed: 12/13/2022] Open
Abstract
Aberrant smooth muscle cells (SMCs) play important roles in the formation of abdominal aortic aneurysm (AAA). Although the molecular mechanism of AAA formation has been investigated, there is a lack of understanding concerning the role of microRNAs (miRNAs) in AAA, which the current study aimed to address. Firstly, miRNA array analysis was performed in order to compare the miRNA profiles in a mouse model of AAA with those in normal control mice, and differentially expressed miRNAs were identified. miR-129-5p was selected for further analysis, and was used to transfect human SMCs. The results of an MTT assay revealed that miR-129-5p inhibited the proliferation of SMCs, and flow cytometry indicated that apoptosis was induced. Bioinformatic analysis predicted that Wnt5a was the potential target gene of miR-129-5p, and this was verified by luciferase assay. In summary, miR-129-5p inhibits cellular proliferation, induces apoptosis and modulates the Wnt5a signaling pathway in SMCs.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Changjian Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
35
|
Abstract
The term epigenetics is usually used to describe inheritable changes in gene function which do not involve changes in the DNA sequence. These typically include non-coding RNAs, DNA methylation and histone modifications. Smoking and older age are recognised risk factors for peripheral artery diseases, such as occlusive lower limb artery disease and abdominal aortic aneurysm, and have been implicated in promoting epigenetic changes. This brief review describes studies that have associated epigenetic factors with peripheral artery diseases and investigations which have examined the effect of epigenetic modifications on the outcome of peripheral artery diseases in mouse models. Investigations have largely focused on microRNAs and have identified a number of circulating microRNAs associated with human peripheral artery diseases. Upregulating or antagonising a number of microRNAs has also been reported to limit aortic aneurysm development and hind limb ischemia in mouse models. The importance of DNA methylation and histone modifications in peripheral artery disease has been relatively little studied. Whether circulating microRNAs can be used to assist identification of patients with peripheral artery diseases and be modified in order to improve the outcome of peripheral artery disease will require further investigation.
Collapse
Affiliation(s)
- Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine & Dentistry, James Cook University, Townsville, QLD, 4811, Australia.
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia.
| | - Erik Biros
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine & Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - John Bingley
- Vascular Surgery Unit, Mater Hospital Brisbane, South Brisbane, QLD, Australia
- Department of Surgery, University of Queensland, Brisbane, Australia
| | - Vikram Iyer
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine & Dentistry, James Cook University, Townsville, QLD, 4811, Australia
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia
- Department of Surgery, University of Queensland, Brisbane, Australia
| | - Smriti M Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine & Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
36
|
Zöller B, Li X, Sundquist J, Sundquist K. A nationwide family study of venous thromboembolism and risk of arterial vascular disease. Heart 2016; 102:1315-21. [DOI: 10.1136/heartjnl-2015-308892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/10/2016] [Indexed: 11/04/2022] Open
|
37
|
Kaźmierski P, Pająk M, Bogusiak K. Concomitance of atherosclerotic lesions in arteries of the lower extremities and carotid arteries in patients with abdominal aorta aneurysm. Artery Res 2016. [DOI: 10.1016/j.artres.2016.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
38
|
Pafili K, Gouni-Berthold I, Papanas N, Mikhailidis DP. Abdominal aortic aneurysms and diabetes mellitus. J Diabetes Complications 2015; 29:1330-6. [PMID: 26440573 DOI: 10.1016/j.jdiacomp.2015.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 11/16/2022]
Abstract
There is accumulating evidence that risk profiles differ between coronary artery disease and abdominal aortic aneurysms (AAAs). However, diabetes mellitus (DM) appears to be negatively associated with AAA formation. The underlying mechanisms for this negative relationship are far from defined, but may include: increased arterial wall matrix formation via advanced glycation end products; suppression of plasmin and reduction of levels and activity of matrix metalloproteinases (MMP)-2 and 9; diminished aortic wall macrophage infiltration, elastolysis and neovascularization. In addition, the effect of pharmacological agents used for the treatment of patients with DM on AAA formation has been studied with rather controversial results. Statins, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, fenofibrate, antibiotics and some hypoglycemic agents are beginning to be appreciated for a potential modest protection from AAAs, but further studies are needed.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Diabetes Clinic, Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Nikolaos Papanas
- Diabetes Clinic, Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Hospital campus, University College London Medical School, University College London (UCL), London NW3 2QG, UK
| |
Collapse
|
39
|
Predicting Abdominal Aortic Aneurysm Target Genes by Level-2 Protein-Protein Interaction. PLoS One 2015; 10:e0140888. [PMID: 26496478 PMCID: PMC4619739 DOI: 10.1371/journal.pone.0140888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is frequently lethal and has no effective pharmaceutical treatment, posing a great threat to human health. Previous bioinformatics studies of the mechanisms underlying AAA relied largely on the detection of direct protein-protein interactions (level-1 PPI) between the products of reported AAA-related genes. Thus, some proteins not suspected to be directly linked to previously reported genes of pivotal importance to AAA might have been missed. In this study, we constructed an indirect protein-protein interaction (level-2 PPI) network based on common interacting proteins encoded by known AAA-related genes and successfully predicted previously unreported AAA-related genes using this network. We used four methods to test and verify the performance of this level-2 PPI network: cross validation, human AAA mRNA chip array comparison, literature mining, and verification in a mouse CaPO4 AAA model. We confirmed that the new level-2 PPI network is superior to the original level-1 PPI network and proved that the top 100 candidate genes predicted by the level-2 PPI network shared similar GO functions and KEGG pathways compared with positive genes.
Collapse
|
40
|
Chen X, Zheng C, He Y, Tian L, Li J, Li D, Jin W, Li M, Zheng S. Identification of key genes associated with the human abdominal aortic aneurysm based on the gene expression profile. Mol Med Rep 2015; 12:7891-8. [PMID: 26498477 PMCID: PMC4758287 DOI: 10.3892/mmr.2015.4448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/17/2015] [Indexed: 12/30/2022] Open
Abstract
The present study was aimed at screening the key genes associated with abdominal aortic aneurysm (AAA) in the neck, and to investigate the molecular mechanism underlying the development of AAA. The gene expression profile, GSE47472, including 14 AAA neck samples and eight donor controls, was downloaded from the Gene Expression Omnibus database. The total AAA samples were grouped into two types to avoid bias. Differentially expressed genes (DEGs) were screened in patients with AAA and subsequently compared with donor controls using linear models for microarray data, or the Limma package in R, followed by gene ontology enrichment analysis. Furthermore, a protein-protein interaction (PPI) network based on the DEGs was constructed to detect highly connected regions using a Cytoscape plugin. In total, 388 DEGs in the AAA samples were identified. These DEGs were predominantly associated with limb development, including embryonic limb development and appendage development. Nuclear receptor co-repressor 1 (NCOR1), histone 4 (H4), E2F transcription factor 4 (E2F4) and hepatocyte nuclear factor 4α (HNF4A) were the four transcription factors associated with AAA. Furthermore, HNF4A indirectly interacted with the other three transcription factors. Additionally, six clusters were selected from the PPI network. The DEG screening process and the construction of an interaction network enabled an understanding of the mechanism of AAA to be gleaned. HNF4A may exert an important role in AAA development through its interactions with the three other transcription factors (E2F4, NCOR1 and H4), and the mechanism of this coordinated regulation of the transcription factors in AAA may provide a suitable target for the development of therapeutic intervention strategies.
Collapse
Affiliation(s)
- Xudong Chen
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Chengfei Zheng
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yunjun He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lu Tian
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianhui Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Donglin Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Jin
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ming Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shusen Zheng
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
41
|
Balistreri CR. Genetic contribution in sporadic thoracic aortic aneurysm? Emerging evidence of genetic variants related to TLR-4-mediated signaling pathway as risk determinants. Vascul Pharmacol 2015; 74:1-10. [PMID: 26409318 DOI: 10.1016/j.vph.2015.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/26/2015] [Accepted: 09/23/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, Palermo 90134, Italy.
| |
Collapse
|
42
|
Moxon JV, Behl-Gilhotra R, Morton SK, Krishna SM, Seto SW, Biros E, Nataatmadja M, West M, Walker PJ, Norman PE, Golledge J. Plasma Low-density Lipoprotein Receptor-related Protein 1 Concentration is not Associated with Human Abdominal Aortic Aneurysm Presence. Eur J Vasc Endovasc Surg 2015; 50:466-73. [PMID: 26188720 DOI: 10.1016/j.ejvs.2015.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/06/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE/BACKGROUND Recent genetic data suggest that a polymorphism of LRP1 is an independent risk factor for abdominal aortic aneurysm (AAA). The aims of this study were to assess whether plasma and aortic concentrations of low-density lipoprotein receptor-related protein 1 (LRP1) are associated with AAA, and to investigate the possible relevance of LRP1 to AAA pathophysiology. METHODS Three analyses were conducted. First, plasma LRP1 concentrations were measured in community-dwelling men with and without AAA (n = 189 and n = 309, respectively) using enzyme-linked immunosorbent assay. Second, Western blotting analyses were employed to compare the expression of LRP1 protein in aortic biopsies collected from patients with AAA and nonaneurysmal postmortem donors (n = 6/group). Finally, the effect of in vitro LRP1 blockade on matrix metalloprotease 9 (MMP9) clearance by vascular smooth muscle cells was assessed by zymography. RESULTS Plasma LRP1 concentrations did not differ between groups of men with and without AAA (median concentration 4.56 μg/mL [interquartile range {IQR} (3.39-5.96)] and 4.43 μg/mL [IQR 3.44-5.84], respectively; p = .48), and were not associated with AAA after adjusting for other risk factors (odds ratio 1.10 [95% confidence interval: 0.91-1.32]; p = 0.35). In contrast, LRP1 expression was approximately 3.4-fold lower in aortic biopsies recovered from patients with AAA compared with controls (median [IQR] expression 1.72 [0.94-3.14] and 5.91 [4.63-6.94] relative density units, respectively; p < .01). In vitro LRP1 blockade significantly reduced the ability of vascular smooth muscle cells to internalize extracellular MMP9. CONCLUSIONS These data suggest that aortic but not circulating LRP1 is downregulated in patients with AAA and indicates a possible role for this protein in clearing an aneurysm-relevant ligand.
Collapse
Affiliation(s)
- J V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - R Behl-Gilhotra
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - S K Morton
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - S M Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - S W Seto
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; National Institute of Complementary Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
| | - E Biros
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - M Nataatmadja
- The Cardiovascular Research Group, Department of Medicine, University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - M West
- The Cardiovascular Research Group, Department of Medicine, University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - P J Walker
- School of Medicine, Discipline of Surgery and Centre for Clinical Research, University of Queensland, Herston, QLD 4072, Australia
| | - P E Norman
- School of Surgery, University of Western Australia, Perth, WA 6009, Australia
| | - J Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; School of Medicine, Discipline of Surgery and Centre for Clinical Research, University of Queensland, Herston, QLD 4072, Australia; Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD 4814, Australia.
| |
Collapse
|
43
|
The potential role of DNA methylation in the pathogenesis of abdominal aortic aneurysm. Atherosclerosis 2015; 241:121-9. [DOI: 10.1016/j.atherosclerosis.2015.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/20/2015] [Accepted: 05/03/2015] [Indexed: 12/18/2022]
|
44
|
Moxon JV, Golledge J. The Need for Translational Research to Advance Peripheral Artery Disease Management. Int J Mol Sci 2015. [PMCID: PMC4463693 DOI: 10.3390/ijms160511125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Joseph V. Moxon
- The Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD 4811, Australia; E-Mail:
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD 4811, Australia; E-Mail:
- Department of Vascular and Endovascular Surgery, the Townsville Hospital, Townsville, QLD 4814, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-4781-4130; Fax: +61-7-4781-3652
| |
Collapse
|
45
|
Rolph RC, Waltham M, Smith A, Kuivaniemi H. Expanding Horizons for Abdominal Aortic Aneurysms. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2015; 3:9-15. [PMID: 26798751 DOI: 10.12945/j.aorta.2015.14-041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
Abstract
Recent technological advances have allowed researchers to interrogate the genetic basis of abdominal aortic aneurysms in great detail. The results from these studies are expected to transform our understanding of this complex disease with both multiple genetic and environmental risk factors. Clinicians need to keep abreast of these genetic findings and understand the implications for their practice. Patients will become increasingly informed on genetic risk, and a new era of individualized risk assessment for AAA is just beginning. This brief update aims to provide the clinician with a succinct précis of the recent progress in this area.
Collapse
Affiliation(s)
- Rachel C Rolph
- King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, Academic Department of Surgery, Cardiovascular Division and Division of Imaging Sciences, St Thomas' Hospital, London, UK
| | - Matthew Waltham
- King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, Academic Department of Surgery, Cardiovascular Division and Division of Imaging Sciences, St Thomas' Hospital, London, UK
| | - Alberto Smith
- King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, Academic Department of Surgery, Cardiovascular Division and Division of Imaging Sciences, St Thomas' Hospital, London, UK
| | - Helena Kuivaniemi
- The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, Pennsylvania, USA; Department of Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Rückert RI, Hanack U, Aronés-Gomez S, Yousefi S. [Aneurysms of the abdominal aorta and iliac arteries: paradigm shift - operative therapy, if possible endovascular?]. Chirurg 2014; 85:782-90. [PMID: 25200628 DOI: 10.1007/s00104-014-2718-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Therapy of abdominal aortic aneurysms (AAA) is currently based on a high level of evidence. This is not true in the same manner for iliac artery aneurysms (IAA) which are frequently associated with AAAs and occur only rarely as isolated lesions. The therapeutic principles apply in the same way to both aneurysm locations. OBJECTIVES New findings, improved perioperative care and the rapid development of minimally invasive techniques require a constant update which is the aim of this article concerning the therapy of AAAs and IAAs. MATERIAL AND METHODS A systematic literature review was performed in PubMed and Medline and priority was given to recent publications with a high level of evidence. RESULTS Endovascular aneurysm repair (EVAR) and open aneurysm repair (OAR) result in a similar long-term survival. The perioperative survival advantage with EVAR persists only during medium-term postoperative courses. The reintervention rate after EVAR is substantially higher compared to OAR. For older patients and those who are considered unfit for OAR the expected benefits from EVAR has not been proven to date. Aneurysmal ruptures after EVAR demonstrate that a life-long surveillance of these patients is necessary. CONCLUSION Therapy of AAAs and IAAs is increasingly being performed by EVAR. Even the majority of complex aneurysms are amenable to minimally invasive treatment. Nevertheless, indications for OAR continue to exist. Screening for AAAs results in a decrease of aneurysmal ruptures for which EVAR is also gaining importance.
Collapse
Affiliation(s)
- R I Rückert
- Klinik für Gefäß- und endovaskuläre Chirurgie, Allgemein- und Viszeralchirurgie Franziskus-Krankenhaus, Akademisches Lehrkrankenhaus der Charité, Universitätsmedizin Berlin, Budapester Str. 15-19, 10787, Berlin, Deutschland,
| | | | | | | |
Collapse
|
47
|
Estrelinha M, Hinterseher I, Kuivaniemi H. Gene expression studies in human abdominal aortic aneurysm. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.rvm.2014.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Loinard C, Basatemur G, Masters L, Baker L, Harrison J, Figg N, Vilar J, Sage AP, Mallat Z. Deletion of chromosome 9p21 noncoding cardiovascular risk interval in mice alters Smad2 signaling and promotes vascular aneurysm. ACTA ACUST UNITED AC 2014; 7:799-805. [PMID: 25176937 DOI: 10.1161/circgenetics.114.000696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vascular aneurysm is an abnormal local dilatation of an artery that can lead to vessel rupture and sudden death. The only treatment involves surgical or endovascular repair or exclusion. There is currently no approved medical therapy for this condition. Recent data established a strong association between genetic variants in the 9p21 chromosomal region in humans and the presence of cardiovascular diseases, including aneurysms. However, the mechanisms linking this 9p21 DNA variant to cardiovascular risk are still unknown. METHODS AND RESULTS Here, we show that deletion of the orthologous 70-kb noncoding interval on mouse chromosome 4 (chr4(Δ70kb/Δ70kb) mice) is associated with reduced aortic expression of cyclin-dependent kinase inhibitor genes p19Arf and p15Inkb. Vascular smooth muscle cells from chr4(Δ70kb/Δ70kb) mice show reduced transforming growth factor-β-dependent canonical Smad2 signaling but increased cyclin-dependent kinase-dependent Smad2 phosphorylation at linker sites, a phenotype previously associated with tumor growth and consistent with the mechanistic link between reduced canonical transforming growth factor-β signaling and susceptibility to vascular diseases. We also show that targeted deletion of the 9p21 risk interval promotes susceptibility to aneurysm development and rupture when mice are subjected to a validated model of aneurysm formation. The vascular disease of chr4(Δ70kb/Δ70kb) mice is prevented by treatment with a cyclin-dependent kinase inhibitor. CONCLUSIONS The results establish a direct mechanistic link between 9p21 noncoding risk interval and susceptibility to aneurysm and may have important implications for the understanding and treatment of vascular diseases.
Collapse
Affiliation(s)
- Céline Loinard
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (C.L., G.B., L.M., L.B., J.H., N.F., A.P.S., Z.M.); and Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France (J.V., Z.M.)
| | - Gemma Basatemur
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (C.L., G.B., L.M., L.B., J.H., N.F., A.P.S., Z.M.); and Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France (J.V., Z.M.)
| | - Leanne Masters
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (C.L., G.B., L.M., L.B., J.H., N.F., A.P.S., Z.M.); and Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France (J.V., Z.M.)
| | - Lauren Baker
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (C.L., G.B., L.M., L.B., J.H., N.F., A.P.S., Z.M.); and Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France (J.V., Z.M.)
| | - James Harrison
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (C.L., G.B., L.M., L.B., J.H., N.F., A.P.S., Z.M.); and Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France (J.V., Z.M.)
| | - Nichola Figg
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (C.L., G.B., L.M., L.B., J.H., N.F., A.P.S., Z.M.); and Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France (J.V., Z.M.)
| | - José Vilar
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (C.L., G.B., L.M., L.B., J.H., N.F., A.P.S., Z.M.); and Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France (J.V., Z.M.)
| | - Andrew P Sage
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (C.L., G.B., L.M., L.B., J.H., N.F., A.P.S., Z.M.); and Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France (J.V., Z.M.)
| | - Ziad Mallat
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (C.L., G.B., L.M., L.B., J.H., N.F., A.P.S., Z.M.); and Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Université Paris-Descartes, Paris, France (J.V., Z.M.).
| |
Collapse
|
49
|
Song Y, Miao R, Wang H, Qin X, Zhang Y, Miao C, Wang Z. Meta-analysis of the association between angiotensin-converting enzyme I/D polymorphism and aortic aneurysm risk. J Renin Angiotensin Aldosterone Syst 2014; 16:1125-9. [PMID: 25155622 DOI: 10.1177/1470320314545557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yan Song
- Department of vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Renying Miao
- Department of vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanjie Wang
- Department of vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Qin
- Department of vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonggan Zhang
- Department of vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaofeng Miao
- Department of vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zifan Wang
- Department of vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Abstract
Recent discoveries are redefining our view of cellular senescence as a trigger of tissue remodelling that acts during normal embryonic development and upon tissue damage. To achieve this, senescent cells arrest their own proliferation, recruit phagocytic immune cells and promote tissue renewal. This sequence of events - senescence, followed by clearance and then regeneration - may not be efficiently completed in aged tissues or in pathological contexts, thereby resulting in the accumulation of senescent cells. Increasing evidence indicates that both pro-senescent therapies and antisenescent therapies can be beneficial. In cancer and during active tissue repair, pro-senescent therapies contribute to minimize the damage by limiting proliferation and fibrosis, respectively. Conversely, antisenescent therapies may help to eliminate accumulated senescent cells and to recover tissue function.
Collapse
|