2
|
Cozgarea A, Cozma D, Teodoru M, Lazăr-Höcher AI, Cirin L, Faur-Grigori AA, Lazăr MA, Crișan S, Gaiță D, Luca CT, Văcărescu C. Heart Rate Recovery: Up to Date in Heart Failure-A Literature Review. J Clin Med 2024; 13:3328. [PMID: 38893039 PMCID: PMC11173322 DOI: 10.3390/jcm13113328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The rising prevalence of cardiovascular disease underscores the growing significance of heart failure (HF). Pathophysiological insights into HF highlight the dysregulation of the autonomic nervous system (ANS), characterized by sympathetic overactivity and diminished vagal tone, impacting cardiovascular function. Heart rate recovery (HRR), a metric measuring the heart's ability to return to its baseline rate post-exertion, plays a crucial role in assessing cardiovascular health. Widely applied across various cardiovascular conditions including HF, coronary artery disease (CAD), and arterial hypertension (HTN), HRR quantifies the difference between peak and recovery heart rates. Given its association with elevated sympathetic tone and exercise, HRR provides valuable insights into the perspective of HF, beyond effort tolerance, reaching toward prognostic and mortality indicators. Incorporating HRR into cardiovascular evaluations enhances our understanding of autonomic regulation in HF, offering potential implications for prognostication and patient management. This review addresses the significance of HRR in HF assessment, analyzing recently conducted studies, and providing a foundation for further research and clinical application.
Collapse
Affiliation(s)
- Andreea Cozgarea
- Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania; (A.C.); (A.-I.L.-H.); (A.-A.F.-G.); (M.-A.L.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| | - Dragoș Cozma
- Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania; (A.C.); (A.-I.L.-H.); (A.-A.F.-G.); (M.-A.L.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania
| | - Minodora Teodoru
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
- Medical Clinical Department, Faculty of Medicine, “Lucian Blaga” University, 550024 Sibiu, Romania
| | - Alexandra-Iulia Lazăr-Höcher
- Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania; (A.C.); (A.-I.L.-H.); (A.-A.F.-G.); (M.-A.L.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Liviu Cirin
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Adelina-Andreea Faur-Grigori
- Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania; (A.C.); (A.-I.L.-H.); (A.-A.F.-G.); (M.-A.L.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
| | - Mihai-Andrei Lazăr
- Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania; (A.C.); (A.-I.L.-H.); (A.-A.F.-G.); (M.-A.L.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania
| | - Simina Crișan
- Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania; (A.C.); (A.-I.L.-H.); (A.-A.F.-G.); (M.-A.L.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania
| | - Dan Gaiță
- Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania; (A.C.); (A.-I.L.-H.); (A.-A.F.-G.); (M.-A.L.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania
| | - Constantin-Tudor Luca
- Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania; (A.C.); (A.-I.L.-H.); (A.-A.F.-G.); (M.-A.L.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania
| | - Cristina Văcărescu
- Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania; (A.C.); (A.-I.L.-H.); (A.-A.F.-G.); (M.-A.L.); (S.C.); (D.G.); (C.-T.L.); (C.V.)
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 300310 Timisoara, Romania
| |
Collapse
|
4
|
Priel E, Wahab M, Mondal T, Freitag A, O'Byrne PM, Killian KJ, Satia I. The Impact of beta blockade on the cardio-respiratory system and symptoms during exercise. Curr Res Physiol 2022; 4:235-242. [PMID: 34988470 PMCID: PMC8710988 DOI: 10.1016/j.crphys.2021.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background Beta blockers prolong life in patients with cardiovascular diseases. Negative chronotropic and inotropic effects carry the potential to adversely effect peripheral skeletal and airway smooth muscle contributing to further fatigue, dyspnea and exercise intolerance. Research questions Do beta-blockers reduce maximal power output (MPO), VO2 max, cardiorespiratory responses, increase the perceived effort required to cycle and breath during cardiopulmonary exercise tests (CPET) and limit the capacity to exercise? Methods Retrospective observational study of subjects performing CPET to capacity from 1988 to 2012. Subjects with and without beta-blockers were compared: baseline physiological characteristics, MPO, VO2 max, heart rate max, ventilation responses and perceived exertion required to cycle and breathe (modified Borg scale). Forward stepwise linear additive regression was performed with MPO as the dependent factor with height, age, gender, muscle strength, FEV1 and DLCO as independent contributors. Results 42,771 subjects were included 7,787 were receiving beta-blocker [mean age 61 yrs, BMI 28.40 kg/m2, 9% airflow obstruction (FEV1/FVC<0.7)] and 34,984 were not [mean age 51yrs, BMI 27.40 kg/m2, 11% airflow obstruction]. Heart rate was lower by 18.2% (95% C.I. 18.15–18.38) (p<0.0001) while Oxygen pulse (VO2/HR) was higher by 19.5% (95% C.I. 19.3–19.7) in those receiving beta blockers. Maximum power output (MPO) was 3.3% lower in those taking beta-blockers. The perceived effort required to cycle and breathe (mBorg) was 8% lower in those taking beta-blockers. Interpretation Increases in oxygen pulse minimize the reduction in exercise intolerance and symptom handicap associated with beta-blockers. Comprehensive set of exercise physiology measurements in a large cohort, to delineate any hazardous effects of beta blockade. Beta-blockers attenuate the heart rate at rest and during exercise. Beta-blockade has no meaningful effects on muscle strength, breathing capacity or exercise induced bronchoconstriction. Beta Blockers were not associated with a reduction in Maximal power output. Increases in Oxygen pulse minimize the reduction in exercise intolerance and symptom handicap associated with beta-blockers.
Collapse
Affiliation(s)
- Eldar Priel
- McMaster University Department of Medicine, Hamilton, Canada.,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada
| | - Mustafaa Wahab
- McMaster University Department of Medicine, Hamilton, Canada
| | - Tapas Mondal
- McMaster University Department of Medicine, Hamilton, Canada
| | - Andy Freitag
- McMaster University Department of Medicine, Hamilton, Canada
| | - Paul M O'Byrne
- McMaster University Department of Medicine, Hamilton, Canada.,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada
| | | | - Imran Satia
- McMaster University Department of Medicine, Hamilton, Canada.,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Canada
| |
Collapse
|
6
|
Djordjevic T, Arena R, Guazzi M, Popovic D. Prognostic Value of NT-Pro Brain Natriuretic Peptide During Exercise Recovery in Ischemic Heart Failure of Reduced, Midrange, and Preserved Ejection Fraction. J Cardiopulm Rehabil Prev 2021; 41:282-287. [PMID: 32947324 DOI: 10.1097/hcr.0000000000000531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischemic heart disease is a leading cause of heart failure (HF), which continues to carry a high mortality despite considerable improvements in diagnosis and treatment. N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) measured at rest is a recognized diagnostic and prognostic marker of HF of reduced ejection fraction (HFrEF); however, its value in patients with HF of midranged/preserved ejection fraction (HFmrEF/HFpEF) is not well established. We examined the prognostic value of NT-pro-BNP during recovery from exercise in patients with ischemic HF (IHF) of any ejection fraction. METHODS Patients (n = 213) with HF (123 HFrEF, 90 HFmrEF/HFpEF) underwent cardiopulmonary exercise testing. Doppler echocardiography was used to estimate resting pulmonary artery systolic pressure (PASP) and tricuspid annular plane systolic excursion (TAPSE). NT-pro-BNP was determined at rest, peak exercise, and after 1 min of exercise recovery. RESULTS Patients with HFrEF had higher plasma levels of NT-pro-BNP at rest, peak exercise, and recovery than those with HFmrEF/HFpEF (984 ± 865 vs 780 ± 805; 1012 ± 956 vs 845 ± 895; 990 ± 1013 vs 808 ± 884 pg/mL; P < .01, respectively), whereas ΔNT-pro-BNP peak/rest and ΔNT-pro-BNP recovery/peak were similar (60 ± 100 vs 50 ± 96; -25 ± 38 vs -20 ± 41 pg/mL, P > .05). During the tracking period (22.4 ± 20.3 mo), 34 patients died, 2 underwent cardiac transplantation, and 3 had left ventricular assist device implantation. In a multivariate regression model, only NT-pro-BNP during exercise recovery and TAPSE/PASP were retained in the regression for the prediction of adverse events (χ2 = 11.4, P <.001). CONCLUSIONS NT-pro-BNP value during exercise recovery may be a robust predictor of adverse events in patients with IHF across a wide range of ejection fraction.
Collapse
Affiliation(s)
- Tea Djordjevic
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (Ms Djordjevic); Department of Physical Therapy, College of Applied Science, University at Illinois, Chicago (Dr Arena); Heart Failure Unit and Cardiopulmonary Laboratory, University Cardiology Department, IRCCS, Policlinico San Donato University Hospital, Milan, Italy (Dr Guazzi); and Clinical Center Serbia, Department of Cardiology, University of Belgrade, Belgrade, Serbia (Dr Popovic)
| | | | | | | |
Collapse
|
8
|
Zamani P, Proto EA, Wilson N, Fazelinia H, Ding H, Spruce LA, Davila A, Hanff TC, Mazurek JA, Prenner SB, Desjardins B, Margulies KB, Kelly DP, Arany Z, Doulias PT, Elrod JW, Allen ME, McCormack SE, Schur GM, D'Aquilla K, Kumar D, Thakuri D, Prabhakaran K, Langham MC, Poole DC, Seeholzer SH, Reddy R, Ischiropoulos H, Chirinos JA. Multimodality assessment of heart failure with preserved ejection fraction skeletal muscle reveals differences in the machinery of energy fuel metabolism. ESC Heart Fail 2021; 8:2698-2712. [PMID: 33991175 PMCID: PMC8318475 DOI: 10.1002/ehf2.13329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS Skeletal muscle (SkM) abnormalities may impact exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF). We sought to quantify differences in SkM oxidative phosphorylation capacity (OxPhos), fibre composition, and the SkM proteome between HFpEF, hypertensive (HTN), and healthy participants. METHODS AND RESULTS Fifty-nine subjects (20 healthy, 19 HTN, and 20 HFpEF) performed a maximal-effort cardiopulmonary exercise test to define peak oxygen consumption (VO2, peak ), ventilatory threshold (VT), and VO2 efficiency (ratio of total work performed to O2 consumed). SkM OxPhos was assessed using Creatine Chemical-Exchange Saturation Transfer (CrCEST, n = 51), which quantifies unphosphorylated Cr, before and after plantar flexion exercise. The half-time of Cr recovery (t1/2, Cr ) was taken as a metric of in vivo SkM OxPhos. In a subset of subjects (healthy = 13, HTN = 9, and HFpEF = 12), percutaneous biopsy of the vastus lateralis was performed for myofibre typing, mitochondrial morphology, and proteomic and phosphoproteomic analysis. HFpEF subjects demonstrated lower VO2,peak , VT, and VO2 efficiency than either control group (all P < 0.05). The t1/2, Cr was significantly longer in HFpEF (P = 0.005), indicative of impaired SkM OxPhos, and correlated with cycle ergometry exercise parameters. HFpEF SkM contained fewer Type I myofibres (P = 0.003). Proteomic analyses demonstrated (a) reduced levels of proteins related to OxPhos that correlated with exercise capacity and (b) reduced ERK signalling in HFpEF. CONCLUSIONS Heart failure with preserved ejection fraction patients demonstrate impaired functional capacity and SkM OxPhos. Reductions in the proportions of Type I myofibres, proteins required for OxPhos, and altered phosphorylation signalling in the SkM may contribute to exercise intolerance in HFpEF.
Collapse
Affiliation(s)
- Payman Zamani
- Penn Cardiovascular Institute, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth A Proto
- Penn Cardiovascular Institute, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Neil Wilson
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Proteomics Core, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hua Ding
- Proteomics Core, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Proteomics Core, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Antonio Davila
- Penn Acute Care Research Collaboration, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas C Hanff
- Penn Cardiovascular Institute, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeremy A Mazurek
- Penn Cardiovascular Institute, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stuart B Prenner
- Penn Cardiovascular Institute, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benoit Desjardins
- Cardiovascular Imaging Section, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel P Kelly
- Penn Cardiovascular Institute, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zoltan Arany
- Penn Cardiovascular Institute, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Kevin D'Aquilla
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dushyant Kumar
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deepa Thakuri
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karthik Prabhakaran
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Langham
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, KS, USA
| | - Steven H Seeholzer
- Proteomics Core, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Julio A Chirinos
- Penn Cardiovascular Institute, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|