1
|
Fan X, Cao J, Li M, Zhang D, El‐Battrawy I, Chen G, Zhou X, Yang G, Akin I. Stroke Related Brain-Heart Crosstalk: Pathophysiology, Clinical Implications, and Underlying Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307698. [PMID: 38308187 PMCID: PMC11005719 DOI: 10.1002/advs.202307698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The emergence of acute ischemic stroke (AIS) induced cardiovascular dysfunctions as a bidirectional interaction has gained paramount importance in understanding the intricate relationship between the brain and heart. Post AIS, the ensuing cardiovascular dysfunctions encompass a spectrum of complications, including heart attack, congestive heart failure, systolic or diastolic dysfunction, arrhythmias, electrocardiographic anomalies, hemodynamic instability, cardiac arrest, among others, all of which are correlated with adverse outcomes and mortality. Mounting evidence underscores the intimate crosstalk between the heart and the brain, facilitated by intricate physiological and neurohumoral complex networks. The primary pathophysiological mechanisms contributing to these severe cardiac complications involve the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic hyperactivity, immune and inflammatory responses, and gut dysbiosis, collectively shaping the stroke-related brain-heart axis. Ongoing research endeavors are concentrated on devising strategies to prevent AIS-induced cardiovascular dysfunctions. Notably, labetalol, nicardipine, and nitroprusside are recommended for hypertension control, while β-blockers are employed to avert chronic remodeling and address arrhythmias. However, despite these therapeutic interventions, therapeutic targets remain elusive, necessitating further investigations into this complex challenge. This review aims to delineate the state-of-the-art pathophysiological mechanisms in AIS through preclinical and clinical research, unraveling their intricate interplay within the brain-heart axis, and offering pragmatic suggestions for managing AIS-induced cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Jianyang Cao
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Mingxia Li
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Dechou Zhang
- Department of NeurologyThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim El‐Battrawy
- Department of Cardiology and AngiologyRuhr University44780BochumGermany
- Institut für Forschung und Lehre (IFL)Department of Molecular and Experimental CardiologyRuhr‐University Bochum44780BochumGermany
| | - Guiquan Chen
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Xiaobo Zhou
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Guoqiang Yang
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim Akin
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| |
Collapse
|
2
|
Premorbid Use of Beta-Blockers or Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers in Patients with Acute Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7733857. [PMID: 36778208 PMCID: PMC9908343 DOI: 10.1155/2023/7733857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
This study was designed to investigate the impact of the preexisting use of beta-blockers, angiotensin-converting enzyme inhibitors (ACEIs), or angiotensin receptor blockers (ARBs) on the cellular immune response in peripheral blood and the clinical outcomes of patients with acute ischemic stroke. We retrospectively collected clinical data from a cohort of 69 patients with premorbid beta-blockers and 56 patients with premorbid ACEIs/ARBs. Additionally, we selected a cohort of 107 patients with acute ischemic stroke to be the control of the same age and sex. We analyzed cellular immune parameters in peripheral blood 1 day after the appearance of symptoms, including the frequencies of circulating white blood cell subpopulations, the neutrophil-to-lymphocyte ratio (NLR), and the lymphocyte-to-monocyte ratio (LMR). We found that the count of lymphocytes and the lymphocyte-to-monocyte ratio were significantly higher in the peripheral blood of patients treated with beta-blockers before stroke than in matched controls. However, the premorbid use of ACEIs/ARBs did not considerably impact the circulating immune parameters listed above in patients with acute ischemic stroke. Furthermore, we found that premorbid use of beta-blockers or ACEIs/ARBs did not significantly change functional outcomes in patients 3 months after the onset of stroke. These results suggest that premorbid use of beta-blockers, but not ACEIs/ARBs, reversed lymphopenia associated with acute ischemic stroke. As cellular immune changes in peripheral blood could be an independent predictor of stroke prognosis, more large-scale studies are warranted to further verify the impact of premorbid use of beta-blockers or ACEIs/ARBs on the prognosis of patients with ischemic stroke. Our research is beneficial to understanding the mechanism of the systemic immune response induced by stroke and has the potential for a therapeutic strategy in stroke interventions and treatment.
Collapse
|
3
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
4
|
Balla HZ, Cao Y, Ström JO. Effect of Beta-Blockers on Stroke Outcome: A Meta-Analysis. Clin Epidemiol 2021; 13:225-236. [PMID: 33762851 PMCID: PMC7982440 DOI: 10.2147/clep.s268105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/13/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction Cardiovascular events and infections are common in the acute phase after stroke. It has been suggested that these complications may be associated with excessive sympathetic activation due to the stroke, and that beta-adrenergic antagonists (beta-blockers) therefore may be beneficial. Aim The aim of the current meta-analysis was to investigate the association between beta-blocker treatment in acute stroke and the three outcomes: mortality, functional outcome and post-stroke infections. Methods A literature search was performed using the keywords stroke, cerebrovascular disorders, adrenergic beta-antagonists, treatment outcome and mortality. Randomized clinical trials and observational studies were eligible for data extraction. Heterogeneity was investigated using I2 statistics. Random effect model was used when heterogeneity presented among studies; otherwise, a fixed-effect model was used. Publication bias was assessed using Egger’s test and by visually inspecting funnel plots. Results A total of 20 studies were eligible for at least one of the three outcomes. Two of the included studies were randomized controlled trials and 18 were observational studies. Quality assessments indicated that the risk of bias was moderate. The meta-analysis found no significant association between treatment with beta-blockers and any of the three outcomes. The studies analyzed for the outcomes mortality and infection were heterogeneous, while studies analyzed for functional outcome were homogeneous. The articles analyzed for mortality showed signs of publication bias. Conclusion The lack of significant effects in the current meta-analysis, comprising more than 100,000 patients, does not support the proposed beneficial effects of beta-blockers in the acute phase of stroke.
Collapse
Affiliation(s)
- Hajnal Zsuzsanna Balla
- Department of Neurology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden.,Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jakob O Ström
- Department of Neurology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Fleming T, Blum B, Averkamp B, Sullivan J, Nathaniel T. Effect of antihypertensive medications on thrombolysis therapy and outcomes in acute ischemic stroke patients. J Clin Hypertens (Greenwich) 2019; 21:271-279. [DOI: 10.1111/jch.13472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Tyler Fleming
- University of South Carolina School of Medicine Greenville; Greenville South Carolina
| | - Brice Blum
- University of South Carolina School of Medicine Greenville; Greenville South Carolina
| | - Benjamin Averkamp
- University of South Carolina School of Medicine Greenville; Greenville South Carolina
| | - James Sullivan
- University of South Carolina School of Medicine Greenville; Greenville South Carolina
| | - Thomas Nathaniel
- University of South Carolina School of Medicine Greenville; Greenville South Carolina
| |
Collapse
|
6
|
Zierath D, Olmstead T, Stults A, Shen A, Kunze A, Becker KJ. Chemical Sympathectomy, but not Adrenergic Blockade, Improves Stroke Outcome. J Stroke Cerebrovasc Dis 2018; 27:3177-3186. [PMID: 30120036 DOI: 10.1016/j.jstrokecerebrovasdis.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND A robust adrenergic response following stroke impairs lymphocyte function, which may prevent the development of autoimmune responses to brain antigens. We tested whether inhibition of the sympathetic response after stroke would increase the propensity for developing autoimmune responses to brain antigens. METHODS Male Lewis rats were treated with 6-hydroxydopamine (OHDA) prior to middle cerebral artery occlusion (MCAO), labetalol after MCAO, or appropriate controls. Behavior was assessed weekly and animals survived to 1 month at which time ELISPOT assays were done on lymphocytes from spleen and brain to determine the Th1 and Th17 responses to myelin basic protein (MBP), ovalbumin (OVA), and concanavalin A. A subset of animals was sacrificed 72 hours after MCAO for evaluation of infarct volume and lymphocyte responsiveness. Plasma C-reactive protein (CRP) was measured as a biomarker of systemic inflammation. RESULTS Despite similar initial stroke severity and infarct volumes, 6-OHDA-treated animals lost less weight and experienced less hyperthermia after stroke. 6-OHDA-treated animals also had decreased CRP in circulation early after stroke and experienced better neurological outcomes at 1 month. The Th1 and Th17 responses to MBP did not differ among treatment groups at 1 month, but the Th1 response to OVA in spleen was more robust in labetalol and less robust in 6-OHDA-treated animals. CONCLUSIONS Chemical sympathectomy with 6-OHDA, but not treatment with labetalol, decreased systemic markers of inflammation early after stroke and improved long-term outcome. An increase in Th1 and Th17 responses to MBP was not seen with inhibition of the sympathetic response.
Collapse
Affiliation(s)
- Dannielle Zierath
- Department of Neurology, University of Washington School of Medicine, Seattle, WA
| | - Theresa Olmstead
- Department of Neurology, University of Washington School of Medicine, Seattle, WA
| | - Astiana Stults
- Department of Neurology, University of Washington School of Medicine, Seattle, WA
| | - Angela Shen
- Department of Neurology, University of Washington School of Medicine, Seattle, WA
| | - Allison Kunze
- Department of Neurology, University of Washington School of Medicine, Seattle, WA
| | - Kyra J Becker
- Department of Neurology, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
7
|
Eizenberg Y, Grossman E, Tanne D, Koton S. Pre admission treatment with Beta-blockers in hypertensive patients with acute stroke and 3-month outcome-Data from a national stroke registry. J Clin Hypertens (Greenwich) 2018. [DOI: 10.1111/jch.13211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoav Eizenberg
- Department of Endocrinology and Metabolism; Clalit Health Services; Tel Aviv-Yaffo District Israel
| | - Ehud Grossman
- Internal Medicine D and Hypertension Unit; The Chaim Sheba Medical Center, Tel Hashomer, Affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - David Tanne
- Neurology Department Joseph Sagol Neuroscience Center; The Chaim Sheba Medical Center; Tel Hashomer, Affiliated to the Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Silvia Koton
- Stanley Steyer School of Health Professions; Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| |
Collapse
|
8
|
Sykora M, Putaala J, Meretoja A, Tatlisumak T, Strbian D. Beta-blocker therapy is not associated with mortality after intracerebral hemorrhage. Acta Neurol Scand 2018; 137:105-108. [PMID: 28869294 DOI: 10.1111/ane.12817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Beta-blocker therapy has been suggested to have neuroprotective properties in the setting of acute stroke; however, the evidence is weak and contradictory. We aimed to examine the effects of pre-admission therapy with beta-blockers (BB) on the mortality following spontaneous intracerebral hemorrhage (ICH). METHODS Retrospective analysis of the Helsinki ICH Study database. RESULTS A total of 1013 patients with ICH were included in the analysis. Patients taking BB were significantly older, had a higher premorbid mRS score, had more DNR orders, and more comorbidities as atrial fibrillation, hypertension, diabetes mellitus, ischemic heart disease, and heart failure. After adjustment for age, pre-existing comorbidities, and prior use of antithrombotic and antihypertensive medications, no differences in in-hospital mortality (OR 1.1, 95% CI 0.8-1.7), 12-month mortality (OR 1.3, 95% CI 0.9-1.9), and 3-month mortality (OR 1.2, 95% CI 0.8-1.7) emerged. CONCLUSION Pre-admission use of BB was not associated with mortality after ICH.
Collapse
Affiliation(s)
- M. Sykora
- Department of Neurology; St. John's Hospital; Medical faculty; Sigmund Freud University Vienna; Wien Austria
| | - J. Putaala
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| | - A. Meretoja
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
- Department of Medicine at the Royal Melbourne Hospital; University of Melbourne; Parkville VIC Australia
| | - T. Tatlisumak
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
- Department of Clinical Neurosciences/Neurology; Institute of Neuroscience and Physiology; Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital; Gothenburg Sweden
| | - D. Strbian
- Department of Neurology; Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
9
|
Gandolfi M, Smania N, Vella A, Picelli A, Chirumbolo S. Assessed and Emerging Biomarkers in Stroke and Training-Mediated Stroke Recovery: State of the Art. Neural Plast 2017; 2017:1389475. [PMID: 28373915 PMCID: PMC5360976 DOI: 10.1155/2017/1389475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Since the increasing update of the biomolecular scientific literature, biomarkers in stroke have reached an outstanding and remarkable revision in the very recent years. Besides the diagnostic and prognostic role of some inflammatory markers, many further molecules and biological factors have been added to the list, including tissue derived cytokines, growth factor-like molecules, hormones, and microRNAs. The literatures on brain derived growth factor and other neuroimmune mediators, bone-skeletal muscle biomarkers, cellular and immunity biomarkers, and the role of microRNAs in stroke recovery were reviewed. To date, biomarkers represent a possible challenge in the diagnostic and prognostic evaluation of stroke onset, pathogenesis, and recovery. Many molecules are still under investigation and may become promising and encouraging biomarkers. Experimental and clinical research should increase this list and promote new discoveries in this field, to improve stroke diagnosis and treatment.
Collapse
Affiliation(s)
- Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Nicola Smania
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Antonio Vella
- Immunology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|