1
|
Sobrano Fais R, Menezes da Costa R, Carvalho Mendes A, Mestriner F, Comerma‐Steffensen SG, Tostes RC, Simonsen U, Silva Carneiro F. NLRP3 activation contributes to endothelin-1-induced erectile dysfunction. J Cell Mol Med 2022; 27:1-14. [PMID: 36515571 PMCID: PMC9806301 DOI: 10.1111/jcmm.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022] Open
Abstract
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB ) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3-/- and caspase-/- mice in the presence of ET-1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET-1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET-1 effect. ET-1 decreased CC ACh-, sodium nitroprusside (SNP)-induced relaxation, and increased caspase-1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET-1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET-1-induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase-1 expression, while BQ788 increased caspase-1 and IL-1β levels in a concentration-dependent manner (100 nM-10 μM). Furthermore, tiron and BAPTA AM prevented ET-1-induced increase in caspase-1. In addition, BAPTA AM blocked ET-1-induced ROS generation. In conclusion, ET-1-induced erectile dysfunction depends on ETA - and ETB -mediated activation of NLRP3 in mouse CC via Ca2+ -dependent ROS generation.
Collapse
Affiliation(s)
- Rafael Sobrano Fais
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil,Division of Pulmonary, Critical Care, and Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | | | - Allan Carvalho Mendes
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | - Fabíola Mestriner
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | | | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular PharmacologyAarhus UniversityAarhusDenmark
| | - Fernando Silva Carneiro
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| |
Collapse
|
2
|
Medicinal Plant Polyphenols Attenuate Oxidative Stress and Improve Inflammatory and Vasoactive Markers in Cerebral Endothelial Cells during Hyperglycemic Condition. Antioxidants (Basel) 2020; 9:antiox9070573. [PMID: 32630636 PMCID: PMC7402133 DOI: 10.3390/antiox9070573] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Blood-brain barrier endothelial cells are the main targets of diabetes-related hyperglycemia that alters endothelial functions and brain homeostasis. Hyperglycemia-mediated oxidative stress may play a causal role. This study evaluated the protective effects of characterized polyphenol-rich medicinal plant extracts on redox, inflammatory and vasoactive markers on murine bEnd3 cerebral endothelial cells exposed to high glucose concentration. The results show that hyperglycemic condition promoted oxidative stress through increased reactive oxygen species (ROS) levels, deregulated antioxidant superoxide dismutase (SOD) activity, and altered expression of genes encoding Cu/ZnSOD, MnSOD, catalase, glutathione peroxidase (GPx), heme oxygenase-1 (HO-1), NADPH oxidase 4 (Nox4), and nuclear factor erythroid 2-related factor 2 (Nrf2) redox factors. Cell preconditioning with inhibitors of signaling pathways highlights a causal role of nuclear factor kappa B (NFκB), while a protective action of AMP-activated protein kinase (AMPK) on redox changes. The hyperglycemic condition induced a pro-inflammatory response by elevating NFκB gene expression and interleukin-6 (IL-6) secretion, and deregulated the production of endothelin-1 (ET-1), endothelial nitric oxide synthase (eNOS), and nitric oxide (NO) vasoactive markers. Importantly, polyphenolic extracts from Antirhea borbonica, Ayapana triplinervis, Dodonaea viscosa, and Terminalia bentzoe French medicinal plants, counteracted high glucose deleterious effects by exhibiting antioxidant and anti-inflammatory properties. In an innovative way, quercetin, caffeic, chlorogenic and gallic acids identified as predominant plant polyphenols, and six related circulating metabolites were found to exert similar benefits. Collectively, these findings demonstrate polyphenol protective action on cerebral endothelial cells during hyperglycemic condition.
Collapse
|
3
|
Tremblay JC, Coombs GB, Howe CA, Vizcardo-Galindo GA, Figueroa-Mujíca RJ, Bermudez D, Tymko MM, Villafuerte FC, Ainslie PN, Pyke KE. Global Reach 2018: reduced flow-mediated dilation stimulated by sustained increases in shear stress in high-altitude excessive erythrocytosis. Am J Physiol Heart Circ Physiol 2019; 317:H991-H1001. [PMID: 31441692 DOI: 10.1152/ajpheart.00316.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Excessive erythrocytosis [EE; hemoglobin concentration (Hb) ≥ 21 g/dL in adult men] is a maladaptive high-altitude pathology associated with increased cardiovascular risk and reduced reactive hyperemia flow-mediated dilation (FMD); however, whether a similar impairment occurs in response to more commonly encountered sustained increases in shear stress [sustained stimulus (SS)-FMD] over a range of overlapping stimuli is unknown. We characterized SS-FMD in response to handgrip exercise in Andeans with and without EE in Cerro de Pasco, Peru (4,330 m). Andean highlanders with EE (n = 17, Hb = 23.2 ± 1.2 g/dL) and without EE (n = 23, Hb = 18.7 ± 1.9 g/dL) performed 3 min of rhythmic handgrip exercise at 20, 35, and 50% of maximum voluntary contraction (MVC). Duplex ultrasound was used to continuously record blood velocity and diameter in the brachial artery, and blood viscosity was measured to accurately calculate shear stress. Although baseline shear stress did not differ, Andeans with EE had 22% lower shear stress than Andeans without at 50% MVC (P = 0.004). At 35 and 50% MVC, SS-FMD was 2.1 ± 2.0 and 2.8 ± 2.7% in Andeans with EE compared with 4.1 ± 3.4 and 7.5 ± 4.5% in those without (P = 0.048 and P < 0.001). The stimulus-response slope (∆shear stress vs. ∆diameter) was lower in Andeans with EE compared with Andeans without (P = 0.028). This slope was inversely related to Hb in Andeans with EE (r2 = 0.396, P = 0.007). A reduced SS-FMD in response to small muscle mass exercise in Andeans with EE indicates a generalized reduction in endothelial sensitivity to shear stress, which may contribute to increased cardiovascular risk in this population.NEW & NOTEWORTHY High-altitude excessive erythrocytosis (EE; hemoglobin concentration ≥ 21 g/dL) is a maladaptation to chronic hypoxia exposure and is associated with increased cardiovascular risk. We examined flow-mediated dilation (FMD) in response to sustained elevations in shear stress achieved using progressive handgrip exercise [sustained stimulus (SS)-FMD] in Andean highlanders with and without EE at 4,330 m. Andeans with EE demonstrated lower SS-FMD compared with those without. Heightened hemoglobin concentration was related to lower SS-FMD in Andeans with EE.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Gustavo A Vizcardo-Galindo
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rómulo J Figueroa-Mujíca
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Hydration Status and Cardiovascular Function. Nutrients 2019; 11:nu11081866. [PMID: 31405195 PMCID: PMC6723555 DOI: 10.3390/nu11081866] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Hypohydration, defined as a state of low body water, increases thirst sensations, arginine vasopressin release, and elicits renin–angiotensin–aldosterone system activation to replenish intra- and extra-cellular fluid stores. Hypohydration impairs mental and physical performance, but new evidence suggests hypohydration may also have deleterious effects on cardiovascular health. This is alarming because cardiovascular disease is the leading cause of death in the United States. Observational studies have linked habitual low water intake with increased future risk for adverse cardiovascular events. While it is currently unclear how chronic reductions in water intake may predispose individuals to greater future risk for adverse cardiovascular events, there is evidence that acute hypohydration impairs vascular function and blood pressure (BP) regulation. Specifically, acute hypohydration may reduce endothelial function, increase sympathetic nervous system activity, and worsen orthostatic tolerance. Therefore, the purpose of this review is to present the currently available evidence linking acute hypohydration with altered vascular function and BP regulation.
Collapse
|
5
|
Duflot T, Moreau-Grangé L, Roche C, Iacob M, Wils J, Rémy-Jouet I, Cailleux AF, Leuillier M, Renet S, Li D, Morisseau C, Lamoureux F, Richard V, Prévost G, Joannidès R, Bellien J. Altered bioavailability of epoxyeicosatrienoic acids is associated with conduit artery endothelial dysfunction in type 2 diabetic patients. Cardiovasc Diabetol 2019; 18:35. [PMID: 30885203 PMCID: PMC6423843 DOI: 10.1186/s12933-019-0843-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/08/2019] [Indexed: 01/04/2023] Open
Abstract
Background This pathophysiological study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes the vasodilator and anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), contributes to conduit artery endothelial dysfunction in type 2 diabetes. Methods and results Radial artery endothelium-dependent flow-mediated dilatation in response to hand skin heating was reduced in essential hypertensive patients (n = 9) and type 2 diabetic subjects with (n = 19) or without hypertension (n = 10) compared to healthy subjects (n = 36), taking into consideration cardiovascular risk factors, flow stimulus and endothelium-independent dilatation to glyceryl trinitrate. Diabetic patients but not non-diabetic hypertensive subjects displayed elevated whole blood reactive oxygen species levels and loss of NO release during heating, assessed by measuring local plasma nitrite variation. Moreover, plasma levels of EET regioisomers increased during heating in healthy subjects, did not change in hypertensive patients and decreased in diabetic patients. Correlation analysis showed in the overall population that the less NO and EETs bioavailability increases during heating, the more flow-mediated dilatation is reduced. The expression and activity of sEH, measured in isolated peripheral blood mononuclear cells, was elevated in diabetic but not hypertensive patients, leading to increased EETs conversion to DHETs. Finally, hyperglycemic and hyperinsulinemic euglycemic clamps induced a decrease in flow-mediated dilatation in healthy subjects and this was associated with an altered EETs release during heating. Conclusions These results demonstrate that an increased EETs degradation by sEH and altered NO bioavailability are associated with conduit artery endothelial dysfunction in type 2 diabetic patients independently from their hypertensive status. The hyperinsulinemic and hyperglycemic state in these patients may contribute to these alterations. Trial registration NCT02311075. Registered December 8, 2014. Electronic supplementary material The online version of this article (10.1186/s12933-019-0843-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Duflot
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France.,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, 76000, Rouen, France
| | | | - Clothilde Roche
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Michèle Iacob
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France
| | - Julien Wils
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | | | | | - Matthieu Leuillier
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Sylvanie Renet
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Dongyang Li
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Fabien Lamoureux
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France.,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, 76000, Rouen, France
| | - Vincent Richard
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Gaëtan Prévost
- Department of Endocrinology, Rouen University Hospital, 76000, Rouen, France.,Normandie Univ, UNIROUEN, INSERM U1239, 76000, Rouen, France
| | - Robinson Joannidès
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France.,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, 76000, Rouen, France
| | - Jérémy Bellien
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France. .,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France. .,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, 76000, Rouen, France.
| |
Collapse
|
6
|
Climie RE, Wheeler MJ, Grace M, Lambert EA, Cohen N, Owen N, Kingwell BA, Dunstan DW, Green DJ. Simple intermittent resistance activity mitigates the detrimental effect of prolonged unbroken sitting on arterial function in overweight and obese adults. J Appl Physiol (1985) 2018; 125:1787-1794. [DOI: 10.1152/japplphysiol.00544.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged sitting contributes to cardiovascular disease (CVD) risk. The underlying mechanisms are unknown but may include changes in arterial function and vasoactive mediators. We examined the effects of prolonged unbroken sitting, relative to regular active interruptions to sitting time, on arterial function in adults at increased CVD risk. In a randomized crossover trial, 19 sedentary overweight/obese adults (mean ± SD age 57 ± 12 yr) completed 2 laboratory-based conditions: 5 h uninterrupted sitting (SIT) and 5 h sitting interrupted every 30 min by 3 min of simple resistance activities (SRA). Femoral artery function [flow-mediated dilation (FMD)], blood flow, and shear rate were measured at 0 h, 30 min, 1 h, 2 h, and 5 h. Brachial FMD was assessed at 0 and 5 h. Plasma was collected hourly for measurement of endothelin-1 (ET-1), nitrates/nitrites, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). There was a significant decline in femoral artery FMD, averaged over 5 h in the SIT condition, relative to SRA ( P < 0.001). Plasma ET-1 total area under the curve over 5 h increased in the SIT condition compared with SRA ( P = 0.006). There was no significant difference between conditions in femoral or brachial shear rate, brachial FMD, nitrates/nitrites, VCAM-1, or ICAM-1 ( P > 0.05 for all). Five hours of prolonged sitting, relative to regular interruptions to sitting time, impaired femoral artery vasodilator function and increased circulating ET-1 in overweight/obese adults. There is the need to build on this evidence beyond acute observations to better understand the potential longer-term vascular-related consequences of prolonged sitting. NEW & NOTEWORTHY This is the first study to examine the effect of prolonged sitting on arterial function in adults at increased cardiovascular disease risk. We have shown that 5 h of prolonged sitting, relative to regular interruptions to sitting time, impaired femoral artery vasodilator function and increased circulating endothelin-1 in overweight/obese adults. There is now the need to build on this evidence beyond acute observations to better understand the potential longer-term vascular-related consequences of prolonged sitting.
Collapse
Affiliation(s)
- Rachel E. Climie
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael J. Wheeler
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Megan Grace
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Elisabeth A. Lambert
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Neale Cohen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Neville Owen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Bronwyn A. Kingwell
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School and Department of Physiology, School of Medicine, Nursing and Health Services, Monash University, Melbourne, Victoria, Australia
| | - David W. Dunstan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Daniel J. Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Tremblay JC, Pyke KE. Flow-mediated dilation stimulated by sustained increases in shear stress: a useful tool for assessing endothelial function in humans? Am J Physiol Heart Circ Physiol 2017; 314:H508-H520. [PMID: 29167121 DOI: 10.1152/ajpheart.00534.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Investigations of human conduit artery endothelial function via flow-mediated vasodilation (FMD) have largely been restricted to the reactive hyperemia (RH) technique, wherein a transient increase in shear stress after the release of limb occlusion stimulates upstream conduit artery vasodilation (RH-FMD). FMD can also be assessed in response to sustained increases in shear stress [sustained stimulus (SS)-FMD], most often created with limb heating or exercise. Exercise in particular creates a physiologically relevant stimulus because shear stress increases, and FMD occurs, during typical day-to-day activity. Several studies have identified that various conditions and acute interventions have a disparate impact on RH-FMD versus SS-FMD, sometimes with only the latter demonstrating impairment. Indeed, evidence suggests that transient (RH) and sustained (SS) shear stress stimuli may be transduced via different signaling pathways, and, as such, SS-FMD and RH-FMD appear to offer unique insights regarding endothelial function. The present review describes the techniques used to assess SS-FMD and summarizes the evidence regarding 1) SS-FMD as an index of endothelial function in humans, highlighting comparisons with RH-FMD, and 2) potential differences in shear stress transduction and vasodilator production stimulated by transient versus sustained shear stress stimuli. The evidence suggests that SS-FMD is a useful tool to assess endothelial function and that further research is required to characterize the mechanisms involved and its association with long-term cardiovascular outcomes. NEW & NOTEWORTHY Sustained increases in peripheral conduit artery shear stress, created via distal skin heating or exercise, provide a physiologically relevant stimulus for flow-mediated dilation (FMD). Sustained stimulus FMD and FMD stimulated by transient, reactive hyperemia-induced increases in shear stress provide distinct assessments of conduit artery endothelial function.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|