1
|
Association between Alcohol Intake and Arterial Stiffness in Healthy Adults: A Systematic Review. Nutrients 2022; 14:nu14061207. [PMID: 35334865 PMCID: PMC8949071 DOI: 10.3390/nu14061207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Arterial stiffness as assessed by Pulse Wave Velocity (PWV) represents an independent predictor of cardiovascular disease. Several dietary compounds and lifestyle factors could influence arterial stiffness. The debate on the significance of the correlation between alcohol consumption and arterial stiffness is still open, given that the relationship is complex and potentially affected by several factors such as alcohol type, consumption levels, gender and age differences. Objective: This systematic literature review aims to examine the evidence supporting an association between alcohol use and PWV, in electronic databases including PubMed/MEDLINE and the Cochrane Library, from January 2010 to November 2020. Screening and full-text reviews were performed by three investigators and data extraction by two. Considering the significant heterogeneity of data only a qualitative analysis (systematic review) was performed. Results: A total of 13 studies met the inclusion criteria. Alcohol consumption was independently associated with arterial stiffness in a J-shaped way in most of the studies included. A benefit of alcohol consumption on arterial stiffness was found in four experimental studies, whilst an unfavorable increasing linear association was found in four others. Associations were confirmed with both oscillometric and tonometric PWV assessment methods. In some studies, a gender and age correlation was found with a more pronounced association in older males. In all studies elevated levels of alcohol consumption were associated with a worsening of arterial stiffness. Conclusions: Despite the variable findings across studies, the current review provides preliminary evidence that light-to-moderate alcohol consumption is associated with arterial stiffness values lower than expected, and evidence that high doses accelerate arterial ageing. These findings could be useful for clinicians who provide recommendations for patients at cardiovascular (CV) risk. Nevertheless, given the heterogeneity of study designs, interventions, measurement methods and statistical evaluations, the protective role of moderate alcohol consumption on arterial stiffness is likely but not certain, warranting additional trials and evidence.
Collapse
|
2
|
The Hungarian Twin Registry Update: Turning From a Voluntary to a Population-Based Registry. Twin Res Hum Genet 2020; 22:561-566. [PMID: 31907087 DOI: 10.1017/thg.2019.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since our last report on the voluntary Hungarian Twin Registry (HTR) in 2012, the number of pairs or multiplets included increased from 310 to 1044. Efforts to turn the registry into a population-based one are on the way. Nearly 128,000 twins living in Hungary (98,500 adults) will be mailed information on how to register on the new HTR website. Twins will be asked to invite their spouses and immediate family members. Meanwhile, strong cooperation through exchange programs has been developed with other foreign twin registries. Current research focuses on radiogenomics, musculoskeletal, cardiovascular and respiratory diseases, gut microbiome as well as basic molecular research and yielded new awards and further publications.
Collapse
|
3
|
Abstract
The Italian Twin Registry (ITR), established in 2001, is a population-based registry of voluntary twins. To date, it consists of approximately 29,000 twins who gave their consent to participate in the studies proposed by the ITR research group. The database comprises 11,500 monozygotic and 16,700 dizygotic twins resident throughout the country and belonging to a wide age range (from 0 to 95 years, mean 36.8 years). This article provides an overview of the recruitment strategies along with the major phenotypes investigated during an 18 years' research period. Over the years, several self-reported questionnaire data were collected, together with saliva/blood samples and measurements taken during in-person interviews or outpatient clinical examinations. Mental and behavioral phenotypes as well as atherosclerotic traits were studied in depth across different age groups. A birth cohort of twins was established and followed up. Novel research hypotheses are also being tested in ongoing projects. The ITR is involved in international studies in collaboration with other twin registries and represents a valuable resource for national and international research initiatives regarding a broad spectrum of health-related characteristics.
Collapse
|
4
|
Li H, Wang X, Lu X, Zhu H, Li S, Duan S, Zhao X, Zhang F, Alterovitz G, Wang F, Li Q, Tian XL, Xu M. Co-expression network analysis identified hub genes critical to triglyceride and free fatty acid metabolism as key regulators of age-related vascular dysfunction in mice. Aging (Albany NY) 2019; 11:7620-7638. [PMID: 31514170 PMCID: PMC6781998 DOI: 10.18632/aging.102275] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
Background: Aging has often been linked to age-related vascular disorders. The elucidation of the putative genes and pathways underlying vascular aging likely provides useful insights into vascular diseases at advanced ages. Transcriptional regulatory network analysis is the key to describing genetic interactions between molecular regulators and their target gene transcriptionally changed during vascular aging. Results: A total of 469 differentially expressed genes were parsed into 6 modules. Among the incorporated sample traits, the most significant module related to vascular aging was associated with triglyceride and enriched with biological terms like proteolysis, blood circulation, and circulatory system process. The module associated with triglyceride was preserved in an independent microarray dataset, indicating the robustness of the identified vascular aging-related subnetwork. Additionally, Enpp5, Fez1, Kif1a, F3, H2-Q7, and their interacting miRNAs mmu-miR-449a, mmu-miR-449c, mmu-miR-34c, mmu-miR-34b-5p, mmu-miR-15a, and mmu-let-7, exhibited the most connectivity with external lipid-related traits. Transcriptional alterations of the hub genes Enpp5, Fez1, Kif1a, and F3, and the interacting microRNAs mmu-miR-34c, mmu-miR-34b-5p, mmu-let-7, mmu-miR-449a, and mmu-miR-449c were confirmed. Conclusion: Our findings demonstrate that triglyceride and free fatty acid-related genes are key regulators of age-related vascular dysfunction in mice and show that the hub genes for Enpp5, Fez1, Kif1a, and F3 as well as their interacting miRNAs mmu-miR-34c, mmu-miR-34b-5p, mmu-let-7, mmu-miR-449a, and mmu-miR-449c, could serve as potential biomarkers in vascular aging. Methods: The microarray gene expression profiles of aorta samples from 6-month old mice (n=6) and 20-month old mice (n=6) were processed to identify nominal differentially expressed genes. These nominal differentially expressed genes were subjected to a weighted gene co-expression network analysis. A network-driven integrative analysis with microRNAs and transcription factors was performed to define significant modules and underlying regulatory pathways associated with vascular aging, and module preservation test was conducted to validate the age-related modules based on an independent microarray gene expression dataset in mice aorta samples including three 32-week old wild-type mice (around 6-month old) and three 78-week old wild-type mice (around 20-month old). Gene ontology and protein-protein interaction analyses were conducted to determine the hub genes as potential biomarkers in the progress of vascular aging. The hub genes were further validated with quantitative real-time polymerase chain reaction in aorta samples from 20 young (6-month old) mice and 20 old (20-month old) mice.
Collapse
Affiliation(s)
- Huimin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.,Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Xinhui Wang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyue Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hongxin Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Sheng Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiwei Duan
- , Medical Genetics Center, School of Medicine, Ningbo University, Ningbo 315000, China
| | - Xinzhi Zhao
- International Peace Maternity and Child Health Hospital of China Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | | | - Gil Alterovitz
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fudi Wang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.,Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|