1
|
Wong GP, Hartmann S, Nonn O, Cannon P, Nguyen TV, Kandel M, de Alwis N, Murphy CN, Pritchard N, Dechend R, Hannan NJ, Tong S, Simmons DG, Kaitu'u-Lino TJ. Stem Cell Markers LGR5, LGR4 and Their Immediate Signalling Partners are Dysregulated in Preeclampsia. Stem Cell Rev Rep 2025; 21:872-896. [PMID: 39688759 DOI: 10.1007/s12015-024-10831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Leucine-rich repeat-containing G protein-coupled receptors 5/4 (LGR5/LGR4) are critical stem cell markers in epithelial tissues including intestine. They agonise wingless-related integration site (WNT) signalling. Until now, LGR5/LGR4 were uncharacterised in placenta, where analogous functions may exist. We characterised LGR5/LGR4, their ligands/targets in human placenta, with further assessments on dysregulation in preeclampsia/fetal growth restriction (FGR). LGR5 mRNA was unaltered in first trimester (n = 11), preterm (n = 9) and term (n = 11) placental lysate. LGR5 was enriched in human trophoblast stem cells (hTSCs) and downregulated with differentiation to extravillous trophoblasts (p < 0.0215) and syncytiotrophoblasts (p < 0.0350). In situ hybridisation localised LGR5 to unique, proliferative MKI67 + mononuclear trophoblasts underlying syncytium which concurred with proposed progenitor identities in single-cell transcriptomics. LGR5 expression was significantly reduced in placentas from early-onset preeclampsia (p < 0.0001, n = 81 versus n = 19 controls), late-onset preeclampsia (p = 0.0046, n = 20 versus n = 33 controls) and FGR (p = 0.0031, n = 34 versus n = 17 controls). LGR4 was elevated in first trimester versus preterm and term placentas (p = 0.0412), in placentas with early-onset preeclampsia (p = 0.0148) and in FGR (p = 0.0417). Transcriptomic analysis and in vitro hTSC differentiation to both trophoblast lineages suggested LGR4 increases with differentiation. Single-nucleus RNA sequencing of placental villous samples supported LGR5 and LGR4 localisation findings. Hypoxia/proinflammatory cytokine treatment modelling elements experienced by the placenta in placental insufficiency pathogenesis did not significantly alter LGR5/LGR4. Ligands R-spondins 1/3/4, and neutralising targets ring finger protein 43 (RNF43) and zinc and ring finger 3 (ZNRF3) were also reduced in placentas from preeclamptic pregnancies. This study is the first to describe LGR5/LGR4 and their signalling partner expression in human placenta. Their dysregulations in the preeclamptic placenta allude to disruptions to integral trophoblast stem cell function/differentiation that may occur during placental development related to WNT signalling.
Collapse
Affiliation(s)
- Georgia P Wong
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| | - Sunhild Hartmann
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charitè Campus Buch, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Berlin, Germany
| | - Olivia Nonn
- Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charitè Campus Buch, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Berlin, Germany
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ping Cannon
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tuong-Vi Nguyen
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Manju Kandel
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natasha de Alwis
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ciara N Murphy
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natasha Pritchard
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ralf Dechend
- Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charitè Campus Buch, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum, Berlin Buch, Germany
| | - Natalie J Hannan
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stephen Tong
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - David G Simmons
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- The Department of Obstetrics, Gynaecology and Newborn Health/Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
2
|
Kasoha M, Takacs Z, Fackiner L, Gerlinger C, Sklavounos P, Radosa J, Solomayer EF, Hamza A. Comparison of Maternal Serum Levels and Placental mRNA Levels of Dickkopf-1 in Preeclamptic and Normal Pregnant Women at Delivery. Geburtshilfe Frauenheilkd 2021; 81:1247-1255. [PMID: 34754274 PMCID: PMC8568501 DOI: 10.1055/a-1557-1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background
Preeclampsia remains a major cause of perinatal and maternal mortality and morbidity worldwide. Wnt/β-catenin signaling is known to be critically involved in placenta development processes. Dickkopf-1 (DKK1) is a key regulator of this transduction pathway. The aim of this study is to compare maternal serum DKK1 levels and placental mRNA levels of
DKK1
and β-catenin in preeclamptic and normal pregnant women at delivery.
Methods
The present study included 30 women with preeclampsia and 30 women with normal pregnancy. Maternal serum DKK1 levels were measured by ELISA. Placental mRNA levels of
DKK1
and β-catenin were detected using RT-PCR.
Results
Decreased maternal serum DKK1 levels were associated with worse maternal and fetal complications including HELLP syndrome, determination of one or more pathological symptom and IUGR diagnosis. No significant difference in maternal serum DKK1 levels was reported between preeclamptic women and women with normal pregnancy. Placental mRNA
DKK1
levels were lower in preeclamptic women compared with normal pregnant women. Placental mRNA β-catenin levels showed no significant difference between two groups.
Conclusions
Our findings reported the aberrant placental mRNA
DKK1
levels in patients with preeclampsia. In addition, worse preeclampsia features were associated with decreased maternal serum DKK1 levels. Hence, aberrant Wnt/β-catenin signaling might present a plausible mechanism in preeclampsia pathogenicity. Dysregulated expression of DKK1 at gene level in the placenta but not at protein level in the maternal serum might confirm the notion that preeclampsia is a type of placenta-derived disease.
Collapse
Affiliation(s)
- Mariz Kasoha
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Zoltan Takacs
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Lena Fackiner
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Christoph Gerlinger
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Panagiotis Sklavounos
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Julia Radosa
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Erich-Franz Solomayer
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| | - Amr Hamza
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
| |
Collapse
|
3
|
Cao X, Wang X, Zhang W, Xia G, Zhang L, Wen Z, He J, Wang Z, Huang J, Wu S. WNT10A induces apoptosis of senescent synovial resident stem cells through Wnt/calcium pathway-mediated HDAC5 phosphorylation in OA joints. Bone 2021; 150:116006. [PMID: 34000432 DOI: 10.1016/j.bone.2021.116006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Recently, the accumulation of senescent cells (SnCs) within joints was found to promote osteoarthritis (OA) progression. Our previous study found that Wnt proteins, especially Wnt10a, have marked effects on cellular senescence and joint health. However, the effect of WNT10A on SnCs in OA joints remains unknown. In this study, we confirmed that the synovium was the first and most marked site of SnC accumulation in the OA joint, and synovial resident mesenchymal stem cells (SMSCs) seemed to be the main source of these SnCs. In synovium samples from OA patients, WNT10A level inversely correlated with the extent of SnCs accumulation. Therefore, we further explored the possible regulatory role and mechanism of WNT10A in intraarticular senescent SMSCs. In brief, we confirmed that WNT10A could specifically clear these senescent OA-SMSCs in vitro experiments and naturally occurring OA models via proapoptotic effects. Mechanistically, WNT10A activated noncanonical Wnt/calcium signaling in senescent OA-SMSCs, which in turn induced histone deacetylase 5 (HDAC5) phosphorylation and nuclear export via its downstream Ca2+/calmodulin-dependent protein kinase II (CaMKII) to regulate cell fate. The regulation of this pathway significantly improved the regenerative microenvironment of OA, exhibiting its potential as a novel clinical disease-modifying OA drugs (DMOADs) target.
Collapse
Affiliation(s)
- Xu Cao
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Xinxing Wang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Wenxiu Zhang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Guang Xia
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Lina Zhang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Zi Wen
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Jinshen He
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Zili Wang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China
| | - Junjie Huang
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China..
| | - Song Wu
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, China..
| |
Collapse
|