1
|
Kostiniuk D, Marttila S, Raitoharju E. Circulatory miRNAs in essential hypertension. Atherosclerosis 2025; 401:119069. [PMID: 39645458 DOI: 10.1016/j.atherosclerosis.2024.119069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, that regulate gene-expression at post-transcriptional level. Unlike other RNA species, blood miRNAs circulate in a highly stable form, either within extracellular vesicles or bound to proteins. In recent years, circulatory miRNA profiles have been proposed as potential biomarkers for multitude of pathologies, including essential hypertension. However, the evidence of miRNA biomarker potential is limited, mainly due to the scarcity of profiling studies associating miRNA levels with hypertension. Furthermore, most of these studies have been performed with preselected miRNA pool, limiting their discovery potential. Here, we summarize the results of the unbiased profiling studies and additionally discuss findings from targeted miRNA analysis. Only miR-30e has been found to be associated with hypertension in more than one unbiased study. The targeted analyses highlight the association of miR-1, -21, -34a, -92a, -122, -126, -143, -145, -605, -623, -1299, as well as let-7 and miR-30 families with hypertension. Current literature indicates that some of these miRNAs are involved in hypertension-associated vascular dysfunction and the development of atherosclerosis, suggesting a novel mechanism for cardiovascular disease risk posed by hypertension. All in all, studies associating hypertension with circulatory miRNA profiles are scarce, with several limitations affecting the comparability of the studies. This review discusses the functions and potential mechanisms linking the identified miRNAs to hypertension and underscores the need for further research.
Collapse
Affiliation(s)
- Daria Kostiniuk
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Gerontology Research Center, Tampere University, Tampere, 33014, Finland
| | - Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland; Fimlab Laboratories, Finland.
| |
Collapse
|
2
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
3
|
Maeda K, Yamada H, Munetsuna E, Fujii R, Yamazaki M, Ando Y, Mizuno G, Tsuboi Y, Ishikawa H, Ohashi K, Hashimoto S, Hamajima N, Suzuki K. Serum carotenoid levels are positively associated with DNA methylation of thioredoxin-interacting protein. INT J VITAM NUTR RES 2024; 94:210-220. [PMID: 37735933 DOI: 10.1024/0300-9831/a000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Background: Carotenoids have been reported to exert protective effects against age-related diseases via changes in DNA methylation. Although lower thioredoxin-interacting protein (TXNIP) DNA methylation is associated with age-related diseases, only a few studies have investigated the factors influencing TXNIP DNA methylation. Carotenoids may be a factor linking TXNIP to specific pathophysiological functions. The aim of this study was to examine whether serum carotenoid levels are associated with TXNIP DNA methylation levels. Methods: We conducted a cross-sectional study using 376 health examination participants (169 men). DNA methylation levels were determined using a pyrosequencing assay. Serum carotenoid levels were determined by high-performance liquid chromatography. Multivariable regression analyses were performed to examine the associations between TXNIP DNA methylation levels and serum carotenoid levels with adjustment for age, BMI, HbA1c, CRP, smoking habits, alcohol consumption, exercise habits, and percentage of neutrophils. Results: Multiple linear regression analyses showed that TXNIP DNA methylation levels were positively associated with serum levels of zeaxanthin/lutein (β [95%CI]: 1.935 [0.184, 3.685]), β-cryptoxanthin (1.447 [0.324, 2.570]), α-carotene (1.061 [0.044, 2.077]), β-carotene (1.272 [0.319, 2.226]), total carotenes (1.255 [0.040, 2.469]), total xanthophylls (2.133 [0.315, 3.951]), provitamin A (1.460 [0.402, 2.519]), and total carotenoids (1.972 [0.261, 3.683]) in men (all p<0.05). Of these, provitamin A showed the stronger association (standardized β=0.216). No significant association of TXNIP DNA methylation and serum carotenoid was observed in women. Conclusions: The findings of this study suggest that carotenoid intake may protect against age-related diseases by altering TXNIP DNA methylation status in men.
Collapse
Affiliation(s)
- Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Bolzano/Bozen, Italy
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
4
|
Gladwell LR, Ahiarah C, Rasheed S, Rahman SM, Choudhury M. Traditional Therapeutics and Potential Epidrugs for CVD: Why Not Both? Life (Basel) 2023; 14:23. [PMID: 38255639 PMCID: PMC10820772 DOI: 10.3390/life14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. In addition to the high mortality rate, people suffering from CVD often endure difficulties with physical activities and productivity that significantly affect their quality of life. The high prevalence of debilitating risk factors such as obesity, type 2 diabetes mellitus, smoking, hypertension, and hyperlipidemia only predicts a bleak future. Current traditional CVD interventions offer temporary respite; however, they compound the severe economic strain of health-related expenditures. Furthermore, these therapeutics can be prescribed indefinitely. Recent advances in the field of epigenetics have generated new treatment options by confronting CVD at an epigenetic level. This involves modulating gene expression by altering the organization of our genome rather than altering the DNA sequence itself. Epigenetic changes are heritable, reversible, and influenced by environmental factors such as medications. As CVD is physiologically and pathologically diverse in nature, epigenetic interventions can offer a ray of hope to replace or be combined with traditional therapeutics to provide the prospect of addressing more than just the symptoms of CVD. This review discusses various risk factors contributing to CVD, perspectives of current traditional medications in practice, and a focus on potential epigenetic therapeutics to be used as alternatives.
Collapse
Affiliation(s)
- Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Chidinma Ahiarah
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Shireen Rasheed
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa 616, Oman
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| |
Collapse
|
5
|
Jusic A, Junuzovic I, Hujdurovic A, Zhang L, Vausort M, Devaux Y. A Machine Learning Model Based on microRNAs for the Diagnosis of Essential Hypertension. Noncoding RNA 2023; 9:64. [PMID: 37987360 PMCID: PMC10660456 DOI: 10.3390/ncrna9060064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
INTRODUCTION Hypertension is a major and modifiable risk factor for cardiovascular diseases. Essential, primary, or idiopathic hypertension accounts for 90-95% of all cases. Identifying novel biomarkers specific to essential hypertension may help in understanding pathophysiological pathways and developing personalized treatments. We tested whether the integration of circulating microRNAs (miRNAs) and clinical risk factors via machine learning modeling may provide useful information and novel tools for essential hypertension diagnosis and management. MATERIALS AND METHODS In total, 174 participants were enrolled in the present observational case-control study, among which, there were 89 patients with essential hypertension and 85 controls. A discovery phase was conducted using small RNA sequencing in whole blood samples obtained from age- and sex-matched hypertension patients (n = 30) and controls (n = 30). A validation phase using RT-qPCR involved the remaining 114 participants. For machine learning, 170 participants with complete data were used to generate and evaluate the classification model. RESULTS Small RNA sequencing identified seven miRNAs downregulated in hypertensive patients as compared with controls in the discovery group, of which six were confirmed with RT-qPCR. In the validation group, miR-210-3p/361-3p/362-5p/378a-5p/501-5p were also downregulated in hypertensive patients. A machine learning support vector machine (SVM) model including clinical risk factors (sex, BMI, alcohol use, current smoker, and hypertension family history), miR-361-3p, and miR-501-5p was able to classify hypertension patients in a test dataset with an AUC of 0.90, a balanced accuracy of 0.87, a sensitivity of 0.83, and a specificity of 0.91. While five miRNAs exhibited substantial downregulation in hypertension patients, only miR-361-3p and miR-501-5p, alongside clinical risk factors, were consistently chosen in at least eight out of ten sub-training sets within the SVM model. CONCLUSIONS This study highlights the potential significance of miRNA-based biomarkers in deepening our understanding of hypertension's pathophysiology and in personalizing treatment strategies. The strong performance of the SVM model highlights its potential as a valuable asset for diagnosing and managing essential hypertension. The model remains to be extensively validated in independent patient cohorts before evaluating its added value in a clinical setting.
Collapse
Affiliation(s)
- Amela Jusic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- HAYA Therapeutics SA, Route De La Corniche 6, SuperLab Suisse—Batiment Serine, 1066 Epalinges, Switzerland
| | - Inela Junuzovic
- Department of Internal Medicine, Medical Center “Plava Medical Group”, Mihajla i Živka Crnogorčevića do br. 10, 75000 Tuzla, Bosnia and Herzegovina
| | - Ahmed Hujdurovic
- Department of Internal Medicine, Medical Center “Plava Medical Group”, Mihajla i Živka Crnogorčevića do br. 10, 75000 Tuzla, Bosnia and Herzegovina
| | - Lu Zhang
- Bioinformatics Platform, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Mélanie Vausort
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| |
Collapse
|
6
|
miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. Int J Mol Sci 2023; 24:ijms24065192. [PMID: 36982265 PMCID: PMC10048938 DOI: 10.3390/ijms24065192] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
MicroRNAs (miRNAs), small noncoding RNAs, are post-transcriptional gene regulators that can promote the degradation or decay of coding mRNAs, regulating protein synthesis. Many experimental studies have contributed to clarifying the functions of several miRNAs involved in regulatory processes at the cardiac level, playing a pivotal role in cardiovascular disease (CVD). This review aims to provide an up-to-date overview, with a focus on the past 5 years, of experimental studies on human samples to present a clear background of the latest advances to summarize the current knowledge and future perspectives. SCOPUS and Web of Science were searched using the following keywords: (miRNA or microRNA) AND (cardiovascular diseases); AND (myocardial infarction); AND (heart damage); AND (heart failure), including studies published from 1 January 2018 to 31 December 2022. After an accurate evaluation, 59 articles were included in the present systematic review. While it is clear that miRNAs are powerful gene regulators, all the underlying mechanisms remain unclear. The need for up-to-date data always justifies the enormous amount of scientific work to increasingly highlight their pathways. Given the importance of CVDs, miRNAs could be important both as diagnostic and therapeutic (theranostic) tools. In this context, the discovery of “TheranoMIRNAs” could be decisive in the near future. The definition of well-setout studies is necessary to provide further evidence in this challenging field.
Collapse
|
7
|
Circulating cell-free micro-RNA as biomarkers: from myocardial infarction to hypertension. Clin Sci (Lond) 2022; 136:1341-1346. [PMID: 36129059 DOI: 10.1042/cs20220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
MicroRNA (miRNA) are small, single strand non-coding RNA molecules involved in the post-transcriptional regulation of target genes. Since their discovery in 1993, over 2000 miRNAs have been identified in humans and there is growing interest in both the diagnostic and therapeutic potential of miRNA. The identification of biomarkers for human disease progression remains an active area of research, and there is a growing number of miRNA and miRNA combinations that have been linked to the development and progression of numerous cardiovascular diseases, including hypertension. In 2010, Chen et al. reported in Clinical Science that cell-free circulating miRNA could serve as novel biomarkers for acute myocardial infarction [1]. In this commentary, we expand on this topic to discuss the potential of using miRNA as biomarkers for hypertension and hypertension-related end-organ damage.
Collapse
|
8
|
Mizuno G, Yamada H, Munetsuna E, Yamazaki M, Ando Y, Fujii R, Tsuboi Y, Teshigawara A, Kageyama I, Osakabe K, Sugimoto K, Ishikawa H, Ichino N, Ohta Y, Ohashi K, Hashimoto S, Suzuki K. Association between the Extent of Peripheral Blood DNA Methylation of HIF3A and Accumulation of Adiposity in community-dwelling Women: The Yakumo Study. Endocr Res 2022; 47:130-137. [PMID: 36104828 DOI: 10.1080/07435800.2022.2121967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION DNA methylation in the CpG sites of intron 1 of HIF3A is associated with body mass index (BMI). This cross-sectional study investigated correlations between DNA methylation of HIF3A and BMI or adiposity parameters in the Japanese population. METHOD DNA methylation of HIF3A was quantified via pyrosequencing. RESULT DNA methylation of HIF3A differed only in women; DNA methylation level at cg27146050 was associated with visceral adipose tissue thickness and correlated with BMI and percent (%) body fat after excluding smokers. CONCLUSION Peripheral blood DNA methylation at the CpG site (cg27146050) of HIF3A correlated with VAT thickness in Japanese women.
Collapse
Affiliation(s)
- Genki Mizuno
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Atsushi Teshigawara
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake, Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Keisuke Osakabe
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Keiko Sugimoto
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Naohiro Ichino
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiji Ohta
- Department of Chemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
9
|
Suzuki K, Yamada H, Fujii R, Munetsuna E, Yamazaki M, Ando Y, Ohashi K, Ishikawa H, Mizuno G, Tsuboi Y, Hashimoto S, Hamajima N. Circulating microRNA-27a and -133a are negatively associated with incident hypertension: A five-year longitudinal population-based study. Biomarkers 2022; 27:496-502. [DOI: 10.1080/1354750x.2022.2070281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mirai Yamazaki
- Faculty of Health Sciences, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, Tokyo, Japan
| | - Yohiski Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Yamazaki M, Yamada H, Munetsuna E, Maeda K, Ando Y, Mizuno G, Fujii R, Tsuboi Y, Ohashi K, Ishikawa H, Hashimoto S, Hamajima N, Suzuki K. DNA methylation level of the gene encoding thioredoxin-interacting protein in peripheral blood cells is associated with metabolic syndrome in the Japanese general population. Endocr J 2022; 69:319-326. [PMID: 34645728 DOI: 10.1507/endocrj.ej21-0339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metabolic syndrome (MetS) is cluster of metabolic diseases, including abdominal obesity, hyperglycemia, high blood pressure, and dyslipidemia, that directly escalate the risk of type 2 diabetes, heart disease, and stroke. Thioredoxin-interacting protein (TXNIP) is a binding protein for thioredoxin, a molecule that is a key inhibitor of cellular oxidation, and thus regulates the cellular redox state. Epigenetic alteration of the TXNIP-encoding locus has been associated with components of MetS. In the present study, we sought to determine whether the level of TXNIP methylation in blood is associated with MetS in the general Japanese population. DNA was extracted from the peripheral blood cells of 37 subjects with and 392 subjects without MetS. The level of TXNIP methylation at cg19693031 was assessed by the bisulfite-pyrosequencing method. We observed that TXNIP methylation levels were lower in MetS subjects (median 74.9%, range 71.7-78.4%) than in non-MetS subjects (median 77.7%, range 74.4-80.5%; p = 0.0024). Calculation of the confounding factor-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for hypomethylation revealed that subjects with MetS exhibited significantly higher ORs for hypomethylation than did those without MetS (OR, 2.92; 95% CI, 1.33-6.62; p = 0.009). Our findings indicated that lower levels of TXNIP methylation are associated with MetS in the general Japanese population. Altered levels of DNA methylation in TXNIP at cg19693031 might play an important role in the pathogenesis of MetS.
Collapse
Affiliation(s)
- Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu 761-0123, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Yoshitaka Ando
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Genki Mizuno
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake 470-1192, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Koji Ohashi
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| |
Collapse
|
11
|
Fujii R, Yamada H, Tsuboi Y, Ando Y, Munetsuna E, Yamazaki M, Ohashi K, Ishikawa H, Ishihara Y, Hashimoto S, Hamajima N, Suzuki K. Association between circulating microRNAs and changes in kidney function: A five-year prospective study among Japanese adults without CKD. Clin Chim Acta 2021; 521:97-103. [PMID: 34242639 DOI: 10.1016/j.cca.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/24/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Although a number of microRNAs (miRNA) reflecting kidney function has been identified, prospective studies are now urgently needed to determine a clinical utility of these miRNAs among general populations. The purpose of this study was to examine the associations between serum miRNAs and kidney function in a population-based study. METHODS We conducted a five-year prospective study (2012-2017) of 169 individuals without chronic kidney disease (CKD) at the baseline survey (mean age, 62.5; 96 women). The real-time qPCR was used to measure serum levels of five previously reported miRNAs. Participants with eGFR < 60 mL/min/1.73 m2 were defined as having CKD. Changes in eGFR were defined as eGFR2017 - eGFR2012. RESULTS After adjusting for covariates including baseline eGFR, lower serum levels (1st tertile) of miR-126 were associated with a greater decline of eGFR (β [SE] = -3.18 [1.50]) and a higher odds ratio (OR) of CKD onset over five years (OR [95% CI] = 3.85 [1.01-16.8]), compared with the 3rd tertile. CONCLUSIONS We found baseline serum miR-126 levels were associated with changes in eGFR and new CKD cases in a five-year prospective study. This result suggests that miR-126 may be a potential biomarker of CKD even among general populations.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Yoshitaka Ando
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure-cho, Takamatsu 761-0123, Japan
| | - Koji Ohashi
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Yuya Ishihara
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan.
| |
Collapse
|