1
|
Haber A, Foy A. Resistant Hypertension: A Brief Review of Pathophysiology. J Gen Intern Med 2025; 40:654-658. [PMID: 39402409 PMCID: PMC11861848 DOI: 10.1007/s11606-024-09103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 02/27/2025]
Abstract
A 52-year-old male comes to the internal medicine clinic for a follow-up for the management of hypertension. He was initially diagnosed with hypertension 5 years ago. His other past medical history includes obesity and hyperlipidemia. His current medications currently include losartan 100 mg daily, hydrochlorothiazide 25 mg, and amlodipine 10 mg. His physical exam is significant for an elevated in-office blood pressure of 160/105 mmHg, BMI 38, and neck circumference > 40 cm. He also reports snoring at night and having significant daytime sleepiness despite getting over 8 hours of sleep each night. This patient meets the most recent diagnostic criteria per the American Heart Association for resistant hypertension. Resistant hypertension is an increasingly prevalent phenotype encountered in both primary care and subspecialty clinics. Multiple comorbidities, including obesity, sleep apnea, chronic kidney disease, heart failure, and diabetes mellitus, are associated with resistant hypertension. Our understanding of the potential etiologies for this condition continues to evolve rapidly. We used a narrative review to explore four research areas in the pathophysiology of resistant hypertension (the sympathetic nervous system, aldosterone excess, endothelial dysfunction, and inflammation) and explore the novel therapies currently in development.
Collapse
Affiliation(s)
- Alexander Haber
- Department of Internal Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Andrew Foy
- Department of Internal Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
- Division of Cardiology, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
2
|
Dos Passos RR, Santos CV, Priviero F, Briones AM, Tostes RC, Webb RC, Bomfim GF. Immunomodulatory Activity of Cytokines in Hypertension: A Vascular Perspective. Hypertension 2024; 81:1411-1423. [PMID: 38686582 PMCID: PMC11168883 DOI: 10.1161/hypertensionaha.124.21712] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cytokines play a crucial role in the structure and function of blood vessels in hypertension. Hypertension damages blood vessels by mechanisms linked to shear forces, activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, oxidative stress, and a proinflammatory milieu that lead to the generation of neoantigens and damage-associated molecular patterns, ultimately triggering the release of numerous cytokines. Damage-associated molecular patterns are recognized by PRRs (pattern recognition receptors) and activate inflammatory mechanisms in endothelial cells, smooth muscle cells, perivascular nerves, and perivascular adipose tissue. Activated vascular cells also release cytokines and express factors that attract macrophages, dendritic cells, and lymphocytes to the blood vessels. Activated and differentiated T cells into Th1, Th17, and Th22 in secondary lymphoid organs migrate to the vessels, releasing specific cytokines that further contribute to vascular dysfunction and remodeling. This chronic inflammation alters the profile of endothelial and smooth muscle cells, making them dysfunctional. Here, we provide an overview of how cytokines contribute to hypertension by impacting the vasculature. Furthermore, we explore clinical perspectives about the modulation of cytokines as a potential therapeutic intervention to specifically target hypertension-linked vascular dysfunction.
Collapse
Affiliation(s)
- Rinaldo R Dos Passos
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
| | - Cintia V Santos
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (C.V.S., R.C.T.)
| | - Fernanda Priviero
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Biomedical Engineering, College of Engineering and Computing (F.P., R.C.W.), University of South Carolina, Columbia
| | - Ana M Briones
- Department of Pharmacology, Facultad de Medicina, Universidad Autónoma de Madrid, Spain (A.M.B.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.M.B.)
- CIBER Cardiovascular, Madrid, Spain (A.M.B.)
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (C.V.S., R.C.T.)
| | - R Clinton Webb
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Biomedical Engineering, College of Engineering and Computing (F.P., R.C.W.), University of South Carolina, Columbia
| | - Gisele F Bomfim
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- NUPADS - Health Education and Research Center, Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil (G.F.B.)
| |
Collapse
|
3
|
Thangaraj SS, Gunlund TSG, Stubbe J, Palarasah Y, Svenningsen P, Nielsen LH, Ovesen PG, Jensen BL. Effect of short-term changes in salt intake on plasma cytokines in women with healthy and hypertensive pregnancies. Pregnancy Hypertens 2024; 35:82-87. [PMID: 38301351 DOI: 10.1016/j.preghy.2024.01.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Salt (NaCl) promotes T-lymphocyte conversion to pro-inflammatory Th-17 cells in vitro. Interleukin (IL)-17A aggravates hypertension in preeclampsia (PE) models. OBJECTIVES It was hypothesized that 1) women with PE exhibit increased plasma IL-17A and related cytokines and 2) high dietary salt intake elevates circulating IL-17A in patients with PE compared to women with healthy pregnancy (HP) and non-pregnant (NonP) women. MAIN OUTCOME MEASURES Plasma concentration of cytokines IL-17A, IFN-γ, IL-10, TNF, IL-6, and IL-1β in samples from NonP women (n = 13), HP (n = 15), and women with PE (n = 7). STUDY DESIGN Biobanked samples from a randomized, double-blind, cross-over placebo-controlled dietary intervention study. Participants received a low sodium diet (50-60 mmol NaCl/24 h) for 10 days and were randomly assigned to ingest placebo tablets (low salt intake) or salt tablets (172 mmol NaCl/24 h, high salt intake) for 5 + 5 days. Plasma samples were drawn at baseline and after each diet. RESULTS While a high salt diet suppressed renin, angiotensin II, and aldosterone levels, it did not affect blood pressure or plasma cytokine concentrations in any group compared to low salt intake. Plasma TNF was significantly higher in PE than in HP and NonP at baseline and after a low salt diet. Plasma IL-6 was significantly higher in PE compared to HP at baseline and NonP at low salt. CONCLUSION Interleukin-17A and related T-cell and macrophage-cytokines are not sensitive to salt-intake in PE. Preeclampsia is associated with elevated levels of TNF and IL-6 macrophage-derived cytokines. Salt-sensitive changes in systemic IL-17A are less likely to explain hypertension in PE.
Collapse
Affiliation(s)
- Sai Sindhu Thangaraj
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark.
| | - Tina-Signe Gissel Gunlund
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Jane Stubbe
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Yaseelan Palarasah
- Dept. of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Per Svenningsen
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Lise Hald Nielsen
- Dept. of women's disease and births, Gødstrup Regional hospital, Aarhus University Hospital Skejby, Denmark
| | - Per Glud Ovesen
- Department of Gynecology and Obstetrics, Institute of Clinical Medicine, Aarhus University Hospital Skejby, Denmark
| | - Boye L Jensen
- Dept. of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
4
|
Benson LN, Mu S. Interferon gamma in the pathogenesis of hypertension - recent insights. Curr Opin Nephrol Hypertens 2024; 33:154-160. [PMID: 38164939 PMCID: PMC10842676 DOI: 10.1097/mnh.0000000000000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW The mounting body of evidence underscores the pivotal role of interferon gamma (IFNγ) in the pathogenesis of hypertension, prompting exploration of the mechanisms by which this cytokine fosters a pro-inflammatory immune milieu, subsequently exacerbating hypertension. In this review, we delve into recent preclinical and clinical studies from the past two years to elucidate how IFNγ participates in the progression of hypertension. RECENT FINDINGS IFNγ promotes renal CD8 + T cell accumulation by upregulating tubular PDL1 and MHC-I, intensifying cell-to-cell interaction. Intriguingly, a nucleotide polymorphism in LNK, predisposing towards hypertension, correlates with augmented T cell IFNγ production. Additionally, anti-IFNγ treatment exhibits protective effects against T cell-mediated inflammation during angiotensin II infusion or transverse aortic constriction. Moreover, knockout of the mineralocorticoid receptor in T cells protects against cardiac dysfunction induced by myocardial infarction, correlating with reduced IFNγ and IL-6, decreased macrophage recruitment, and attenuated fibrosis. Interestingly, increased IFNγ production correlates with elevated blood pressure, impacting individuals with type 2 diabetes, nondiabetics, and obese hypertensive patients. SUMMARY These revelations spotlight IFNγ as the critical mediator bridging the initial phase of blood pressure elevation with the sustained and exacerbated pathology. Consequently, blocking IFNγ signaling emerges as a promising therapeutic target to improve the management of this 'silent killer.'
Collapse
Affiliation(s)
- Lance N. Benson
- Heersink School of Medicine: Department of CardioRenal Physiology and Medicine, Division of Nephrology University of Alabama at Birmingham, Birmingham, Alabama
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
6
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|