1
|
Saboune J, Schwende BK, Debray A, Usselman CW, Davenport MH, Steinback CD. Acute hyperoxia elicits decreases in muscle sympathetic nerve activity and action potential activation in a sex-dependent manner. Auton Neurosci 2025; 260:103287. [PMID: 40344748 DOI: 10.1016/j.autneu.2025.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
Acute hyperoxia (100 % oxygen) has been shown to reduce muscle sympathetic nerve activity (MSNA), suggesting that hyperoxia could be a potential strategy for lowering blood pressure. However, the efficacy of hyperoxia to reduce blood pressure (e.g., mean arterial pressure; MAP) remains unclear. Therefore, we compared MSNA and MAP responses to acute hyperoxia (1-min pokilocapnic + 3-min, PetO2 O2 + 300 Torr) between 18 females and 13 males. Baseline integrated total MSNA was not different between females and males (24 ± 7 vs 23 ± 8 bursts/min, respectively; P = 0.68) while MAP was lower in females than males (85 ± 7 vs 93 ± 7 mmHg; P < 0.01). Overall, hyperoxia evoked reductions in MSNA burst frequency (BF; P = 0.02) but not burst amplitude (BA; P = 0.82) or total MSNA (=BF ∗ BA; P = 0.26), To further probe these responses, 1-min nadir total MSNA response to hyperoxia were extracted within each participant. Total MSNA was reduced from baseline during nadir hyperoxia only in males (sex ∗ cond: P = 0.04). Females exhibited a bimodal distribution of sympatho-inhibitors (FI) and non-inhibitors (FNI). FNI demonstrated limited reductions in BF (P = 0.11 vs inhibitors) coupled with increases in BA (P < 0.01 vs inhibitors), resulting in no net change in total MSNA (P < 0.01 vs inhibitors). Mechanistically, action potential (AP) detection analyses revealed that FNI increased AP firing during hyperoxia (baseline: 313 ± 172 vs hyperoxia: 404 ± 192 spikes/min; P = 0.02), whereas hyperoxia blunted AP firing in FI (baseline: 387 ± 263 vs hyperoxia: 267 ± 199 spikes/min; P = 0.02). In sum, approximately 50 % of healthy females responded to acute hyperoxia with unexpected increases in AP firing. These data may suggest that benefit of hyperoxia as a sympatho-inhibitor may be limited in young and healthy females.
Collapse
Affiliation(s)
- Jinan Saboune
- Cardiovascular Health and Autonomic Regulation Laboratory, McGill University, Canada
| | - Brittany K Schwende
- Cardiovascular Health and Autonomic Regulation Laboratory, McGill University, Canada
| | - Amélie Debray
- Cardiovascular Health and Autonomic Regulation Laboratory, McGill University, Canada
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, McGill University, Canada; Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Physical Education and Recreation, Canada; Alberta Diabetes Institute, Canada; Women and Children's Health Research Institute, Canada
| | - Margie H Davenport
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Physical Education and Recreation, Canada; Alberta Diabetes Institute, Canada
| | - Craig D Steinback
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Physical Education and Recreation, Canada; Alberta Diabetes Institute, Canada.
| |
Collapse
|
2
|
Young DA, Jones PAT, Matenchuk BA, Sivak A, Davenport MH, Steinback CD. The effect of hyperoxia on muscle sympathetic nerve activity: a systematic review and meta-analysis. Clin Auton Res 2024; 34:233-252. [PMID: 38709357 DOI: 10.1007/s10286-024-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE We conducted a meta-analysis to determine the effect of hyperoxia on muscle sympathetic nerve activity in healthy individuals and those with cardio-metabolic diseases. METHODS A comprehensive search of electronic databases was performed until August 2022. All study designs (except reviews) were included: population (humans; apparently healthy or with at least one chronic disease); exposures (muscle sympathetic nerve activity during hyperoxia or hyperbaria); comparators (hyperoxia or hyperbaria vs. normoxia); and outcomes (muscle sympathetic nerve activity, heart rate, blood pressure, minute ventilation). Forty-nine studies were ultimately included in the meta-analysis. RESULTS In healthy individuals, hyperoxia had no effect on sympathetic burst frequency (mean difference [MD] - 1.07 bursts/min; 95% confidence interval [CI] - 2.17, 0.04bursts/min; P = 0.06), burst incidence (MD 0.27 bursts/100 heartbeats [hb]; 95% CI - 2.10, 2.64 bursts/100 hb; P = 0.82), burst amplitude (P = 0.85), or total activity (P = 0.31). In those with chronic diseases, hyperoxia decreased burst frequency (MD - 5.57 bursts/min; 95% CI - 7.48, - 3.67 bursts/min; P < 0.001) and burst incidence (MD - 4.44 bursts/100 hb; 95% CI - 7.94, - 0.94 bursts/100 hb; P = 0.01), but had no effect on burst amplitude (P = 0.36) or total activity (P = 0.90). Our meta-regression analyses identified an inverse relationship between normoxic burst frequency and change in burst frequency with hyperoxia. In both groups, hyperoxia decreased heart rate but had no effect on any measure of blood pressure. CONCLUSION Hyperoxia does not change sympathetic activity in healthy humans. Conversely, in those with chronic diseases, hyperoxia decreases sympathetic activity. Regardless of disease status, resting sympathetic burst frequency predicts the degree of change in burst frequency, with larger decreases for those with higher resting activity.
Collapse
Affiliation(s)
- Desmond A Young
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Paris A T Jones
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Brittany A Matenchuk
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Allison Sivak
- Geoffrey and Robyn Sperber Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Margie H Davenport
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Faitatzidou D, Karagiannidis AG, Theodorakopoulou MP, Xanthopoulos A, Triposkiadis F, Sarafidis PA. Autonomic Nervous System Dysfunction in Peritoneal Dialysis Patients: An Underrecognized Cardiovascular Risk Factor? Am J Nephrol 2023; 55:37-55. [PMID: 37788657 DOI: 10.1159/000534318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND In patients with end-stage kidney disease (ESKD) receiving peritoneal dialysis (PD), cardiovascular events represent the predominant cause of morbidity and mortality, with cardiac arrhythmias and sudden death being the leading causes of death in this population. Autonomic nervous system (ANS) dysfunction is listed among the non-traditional risk factors accounting for the observed high cardiovascular burden, with a plethora of complex and not yet fully understood pathophysiologic mechanisms being involved. SUMMARY In recent years, preliminary studies have investigated and confirmed the presence of ANS dysfunction in PD patients, while relevant results from cohort studies have linked ANS dysfunction with adverse clinical outcomes in these patients. In light of these findings, ANS dysfunction has been recently receiving wider consideration as an independent cardiovascular risk factor in PD patients. The aim of this review was to describe the mechanisms involved in the pathogenesis of ANS dysfunction in ESKD and particularly PD patients and to summarize the existing studies evaluating ANS dysfunction in PD patients. KEY MESSAGES ANS dysfunction in PD patients is related to multiple complex mechanisms that impair the balance between SNS/PNS, and this disruption represents a crucial intermediator of cardiovascular morbidity and mortality in this population.
Collapse
Affiliation(s)
- Danai Faitatzidou
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Artemios G Karagiannidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Filippos Triposkiadis
- Department of Cardiology, University Hospital of Larissa, Larissa, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Pantelis A Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Abstract
Substantial advances have been made recently into the discovery of fundamental mechanisms underlying the neural control of breathing and even some inroads into translating these findings to treating breathing disorders. Here, we review several of these advances, starting with an appreciation of the importance of V̇A:V̇CO2:PaCO2 relationships, then summarizing our current understanding of the mechanisms and neural pathways for central rhythm generation, chemoreception, exercise hyperpnea, plasticity, and sleep-state effects on ventilatory control. We apply these fundamental principles to consider the pathophysiology of ventilatory control attending hypersensitized chemoreception in select cardiorespiratory diseases, the pathogenesis of sleep-disordered breathing, and the exertional hyperventilation and dyspnea associated with aging and chronic diseases. These examples underscore the critical importance that many ventilatory control issues play in disease pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin
| | - Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
5
|
Tsioufis PA, Theofilis P, Vlachakis PK, Dimitriadis K, Tousoulis D, Tsioufis K. Novel Invasive Methods as the Third Pillar for the Treatment of Essential Uncontrolled Hypertension. Curr Pharm Des 2023; 29:2780-2786. [PMID: 37641987 DOI: 10.2174/1381612829666230828142346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Pharmacologic therapies remain the treatment of choice for patients with essential hypertension, as endorsed by international guidelines. However, several cases warrant additional modalities, such as invasive antihypertensive therapeutics. The major target of these interventions is the modulation of the sympathetic nervous system, which is a common pathophysiologic mechanism in essential hypertension. In this narrative review, we elaborate on the role of invasive antihypertensive treatments with a focus on renal denervation, stressing their potential as well as the drawbacks that prevent their widespread implementation in everyday clinical practice. In the field of renal denervation, several trials have shown significant and sustained reductions in the level of office and ambulatory blood pressure, regardless of the type of energy that was used (radiofrequency or ultrasound). Critically, renal denervation is considered a safe intervention, as evidenced by follow-up data from large clinical trials. Baroreflex activation therapy may result in enhanced parasympathetic nervous system activation, thus lowering blood pressure levels. Along the same lines, carotid body ablation could also produce a significant antihypertensive effect, which has not been tested in appropriately designed randomized trials. Moreover, cardiac neuromodulation therapy could prove efficacious by altering the duration of the atrioventricular interval in order to regulate the preload of the left ventricle and, therefore, lower blood pressure.
Collapse
Affiliation(s)
| | - Panagiotis Theofilis
- First Department of Cardiology, "Hippocration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Panayotis K Vlachakis
- First Department of Cardiology, "Hippocration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Kyriakos Dimitriadis
- First Department of Cardiology, "Hippocration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, "Hippocration" General Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, "Hippocration" General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
6
|
Saha M, Sun QJ, Hildreth CM, Burke PGR, Phillips JK. Augmented Respiratory-Sympathetic Coupling and Hemodynamic Response to Acute Mild Hypoxia in Female Rodents With Chronic Kidney Disease. Front Physiol 2021; 12:623599. [PMID: 34113258 PMCID: PMC8185289 DOI: 10.3389/fphys.2021.623599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/15/2021] [Indexed: 11/15/2022] Open
Abstract
Carotid body feedback and hypoxia may serve to enhance respiratory–sympathetic nerve coupling (respSNA) and act as a driver of increased blood pressure. Using the Lewis polycystic kidney (LPK) rat model of chronic kidney disease, we examined respSNA in adult female rodents with CKD and their response to acute hypoxia or hypercapnia compared to Lewis control animals. Under urethane anesthesia, phrenic nerve activity, splanchnic sympathetic nerve activity (sSNA), and renal sympathetic nerve activity (rSNA) were recorded under baseline conditions and during mild hypoxic or hypercapnic challenges. At baseline, tonic SNA and blood pressure were greater in female LPK rats versus Lewis rats (all P < 0.05) and respSNA was at least two-fold larger [area under the curve (AUC), sSNA: 7.8 ± 1.1 vs. 3.4 ± 0.7 μV s, rSNA: 11.5 ± 3 vs. 4.8 ± 0.7 μV s, LPK vs. Lewis, both P < 0.05]. Mild hypoxia produced a larger pressure response in LPK [Δ mean arterial pressure (MAP) 30 ± 6 vs. 12 ± 6 mmHg] and augmented respSNA (ΔAUC, sSNA: 8.9 ± 3.4 vs. 2 ± 0.7 μV s, rSNA: 6.1 ± 1.2 vs. 3.1 ± 0.7 μV s, LPK vs. Lewis, all P ≤ 0.05). In contrast, central chemoreceptor stimulation produced comparable changes in blood pressure and respSNA (ΔMAP 13 ± 3 vs. 9 ± 5 mmHg; respSNA ΔAUC, sSNA: 2.5 ± 1 vs. 1.3 ± 0.7 μV s, rSNA: 4.2 ± 0.9 vs. 3.5 ± 1.4 μV s, LPK vs. Lewis, all P > 0.05). These results demonstrate that female rats with CKD exhibit heightened respSNA coupling at baseline that is further augmented by mild hypoxia, and not by hypercapnia. This mechanism may be a contributing driver of hypertension in this animal model of CKD.
Collapse
Affiliation(s)
- Manash Saha
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Nephrology, National Institute of Kidney Disease and Urology, Dhaka, Bangladesh.,Graduate School of Medicine, Wollongong University, Wollongong, NSW, Australia
| | - Qi-Jian Sun
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Cara M Hildreth
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter G R Burke
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | | |
Collapse
|
7
|
Abstract
In the past decade, efforts to improve blood pressure control have looked beyond conventional approaches of lifestyle modification and drug therapy to embrace interventional therapies. Based upon animal and human studies clearly demonstrating a key role for the sympathetic nervous system in the etiology of hypertension, the newer technologies that have emerged are predominantly aimed at neuromodulation of peripheral nervous system targets. These include renal denervation, baroreflex activation therapy, endovascular baroreflex amplification therapy, carotid body ablation, and pacemaker-mediated programmable hypertension control. Of these, renal denervation is the most mature, and with a recent series of proof-of-concept trials demonstrating the safety and efficacy of radiofrequency and more recently ultrasound-based renal denervation, this technology is poised to become available as a viable treatment option for hypertension in the foreseeable future. With regard to baroreflex activation therapy, endovascular baroreflex amplification, carotid body ablation, and programmable hypertension control, these are developing technologies for which more human data are required. Importantly, central nervous system control of the circulation remains a poorly understood yet vital component of the hypertension pathway and mandates further investigation. Technology to improve blood pressure control through deep brain stimulation of key cardiovascular control territories is, therefore, of interest. Furthermore, alternative nonsympathomodulatory intervention targeting the hemodynamics of the circulation may also be worth exploring for patients in whom sympathetic drive is less relevant to hypertension perpetuation. Herein, we review the aforementioned technologies with an emphasis on the preclinical data that underpin their rationale and the human evidence that supports their use.
Collapse
Affiliation(s)
- Felix Mahfoud
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Saarland University, Homburg, Germany (F.M.)
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA (F.M.)
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, The University of Western Australia, Australia (M.S.)
- Departments of Cardiology (M.S.), Royal Perth Hospital, Australia
- Nephrology (M.S.), Royal Perth Hospital, Australia
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (M.S.)
| | - Melvin D Lobo
- William Harvey Research Institute and Barts NIHR Cardiovascular Biomedical Research Centre, Queen Mary University of London, United Kingdom (M.D.L.)
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom (M.D.L.)
| |
Collapse
|
8
|
Keir DA, Duffin J, Floras JS. Measuring Peripheral Chemoreflex Hypersensitivity in Heart Failure. Front Physiol 2020; 11:595486. [PMID: 33447244 PMCID: PMC7802759 DOI: 10.3389/fphys.2020.595486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) induces chronic sympathetic activation. This disturbance is a consequence of both compensatory reflex disinhibition in response to lower cardiac output and patient-specific activation of one or more excitatory stimuli. The result is the net adrenergic output that exceeds homeostatic need, which compromises cardiac, renal, and vascular function and foreshortens lifespan. One such sympatho-excitatory mechanism, evident in ~40-45% of those with HFrEF, is the augmentation of carotid (peripheral) chemoreflex ventilatory and sympathetic responsiveness to reductions in arterial oxygen tension and acidosis. Recognition of the contribution of increased chemoreflex gain to the pathophysiology of HFrEF and to patients' prognosis has focused attention on targeting the carotid body to attenuate sympathetic drive, alleviate heart failure symptoms, and prolong life. The current challenge is to identify those patients most likely to benefit from such interventions. Two assumptions underlying contemporary test protocols are that the ventilatory response to acute hypoxic exposure quantifies accurately peripheral chemoreflex sensitivity and that the unmeasured sympathetic response mirrors the determined ventilatory response. This Perspective questions both assumptions, illustrates the limitations of conventional transient hypoxic tests for assessing peripheral chemoreflex sensitivity and demonstrates how a modified rebreathing test capable of comprehensively quantifying both the ventilatory and sympathoneural efferent responses to peripheral chemoreflex perturbation, including their sensitivities and recruitment thresholds, can better identify individuals most likely to benefit from carotid body intervention.
Collapse
Affiliation(s)
- Daniel A. Keir
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, Toronto General Research Institute, Toronto, ON, Canada
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - James Duffin
- Department of Anesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Thornhill Research Inc., Toronto, ON, Canada
| | - John S. Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, Toronto General Research Institute, Toronto, ON, Canada
| |
Collapse
|
9
|
Sympathetic nerve traffic overactivity in chronic kidney disease: a systematic review and meta-analysis. J Hypertens 2020; 39:408-416. [PMID: 33031182 DOI: 10.1097/hjh.0000000000002661] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Studies based on microneurographic sympathetic nerve activity (MSNA) recordings have shown that the sympathetic system is overactivated in chronic kidney disease (CKD) patients but the relationship between MSNA and renal function and other risk factors has not been systematically reviewed in this population. DESIGN AND MEASUREMENTS This meta-analysis compares MSNA in cardiovascular complications-free CKD patients (n = 638) and healthy individuals (n = 372) and assesses the relationship of MSNA with the eGFR, age, BMI and hemodynamic variables. RESULTS In a global analysis, MSNA was higher in CKD patients than in healthy control individuals (P < 0.001). The difference in MSNA between patients and healthy individuals was more marked in end-stage kidney diseases patients than in stage 3A 3B CKD patients (P < 0.001). In an analysis combining patients and healthy individuals, MSNA rose gradually across progressively lower eGFR categories (P < 0.01). In separate meta-regression analyses in CKD patients and in healthy individuals, MSNA associated directly with age (CKD: r = 0.57, P = 0.022; healthy individuals: r = 0.71, P = 0.031) and with the BMI (r = 0.75, P = 0.001 and r = 0.93, P = 0.003). In both groups, MSNA correlated with heart rate (r = 0.77, P = 0.02 and r = 0.66, P = 0.01) but was unrelated to plasma norepinephrine. CONCLUSION Independently of comorbidities, MSNA is markedly increased in CKD patients as compared with healthy individuals and it is related to renal function, age, the BMI and heart rate. Sympathetic activation intensifies as CKD progresses toward kidney failure and such an intensification is paralleled by a progressive rise in heart rate but it is not reflected by plasma norepinephrine.
Collapse
|
10
|
Brognara F, Felippe ISA, Salgado HC, Paton JFR. Autonomic innervation of the carotid body as a determinant of its sensitivity: implications for cardiovascular physiology and pathology. Cardiovasc Res 2020; 117:1015-1032. [PMID: 32832979 DOI: 10.1093/cvr/cvaa250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/01/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
The motivation for this review comes from the emerging complexity of the autonomic innervation of the carotid body (CB) and its putative role in regulating chemoreceptor sensitivity. With the carotid bodies as a potential therapeutic target for numerous cardiorespiratory and metabolic diseases, an understanding of the neural control of its circulation is most relevant. Since nerve fibres track blood vessels and receive autonomic innervation, we initiate our review by describing the origins of arterial feed to the CB and its unique vascular architecture and blood flow. Arterial feed(s) vary amongst species and, unequivocally, the arterial blood supply is relatively high to this organ. The vasculature appears to form separate circuits inside the CB with one having arterial venous anastomoses. Both sympathetic and parasympathetic nerves are present with postganglionic neurons located within the CB or close to it in the form of paraganglia. Their role in arterial vascular resistance control is described as is how CB blood flow relates to carotid sinus afferent activity. We discuss non-vascular targets of autonomic nerves, their possible role in controlling glomus cell activity, and how certain transmitters may relate to function. We propose that the autonomic nerves sub-serving the CB provide a rapid mechanism to tune the gain of peripheral chemoreflex sensitivity based on alterations in blood flow and oxygen delivery, and might provide future therapeutic targets. However, there remain a number of unknowns regarding these mechanisms that require further research that is discussed.
Collapse
Affiliation(s)
- Fernanda Brognara
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton Auckland 1023, New Zealand.,Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Igor S A Felippe
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton Auckland 1023, New Zealand
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton Auckland 1023, New Zealand
| |
Collapse
|
11
|
Reyes LM, Khurana R, Usselman CW, Busch SA, Skow RJ, Boulé NG, Davenport MH, Steinback CD. Sympathetic nervous system activity and reactivity in women with gestational diabetes mellitus. Physiol Rep 2020; 8:e14504. [PMID: 32633077 PMCID: PMC7338594 DOI: 10.14814/phy2.14504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is associated with vascular dysfunction. Sympathetic nervous system activity (SNA) is an important regulator of vascular function, and is influenced by glucose and insulin. The association between GDM and SNA (re)activity is unknown. We hypothesize that women with GDM would have increased SNA during baseline and during stress. METHODS Eighteen women with GDM and 18 normoglycemic pregnant women (controls) were recruited. Muscle SNA (MSNA; peroneal microneurography) was assessed at rest, during a cold pressor test (CPT) and during peripheral chemoreflex deactivation (hyperoxia). Spontaneous sympathetic baroreflex gain was quantified versus diastolic pressure at rest and during hyperoxia. RESULTS Age, gestational age (third trimester) and pre-pregnancy body mass index and baseline MSNA was not different among the groups. Women with GDM had a similar increase in MSNA, but a greater pressor response to CPT compared to controls (% change in MAP 17 ± 7% vs. 9 ± 9%; p = .004). These data are consistent with a greater neurovascular transduction in GDM (% change in total peripheral resistance/% change in burst frequency [BF]: 15.9 ± 30.2 vs. -5.2 ± 16.4, p = .03). Interestingly, women with GDM had a greater reduction in MSNA during hyperoxia (% change in BF -30 ± 19% vs. -6 ± 17%; p = .01). CONCLUSION Women diagnosed with GDM have similar basal SNA versus normoglycemic pregnant women, but greater neurovascular transduction, meaning a greater influence of the sympathetic nerve activity in these women. We also document evidence of chemoreceptor hyperactivity, which may influence SNA in women with GDM but not in controls.
Collapse
Affiliation(s)
- Laura M. Reyes
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
| | - Rshmi Khurana
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
- Departments of Medicine and Obstetrics and GynecologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonABCanada
| | - Charlotte W. Usselman
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
| | - Stephen A. Busch
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
| | - Rachel J. Skow
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
| | - Normand G. Boulé
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Margie H. Davenport
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Craig D. Steinback
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
| |
Collapse
|
12
|
Zhang J, Gong WY, Liu M, Zhou W, Rao J, Li YQ, Wu JH, Luo D, Wang C, Peng H. A Variant in the NEDD4L Gene Associates With Hypertension in Chronic Kidney Disease in the Southeastern Han Chinese Population. Am J Hypertens 2020; 33:341-349. [PMID: 31993646 DOI: 10.1093/ajh/hpaa015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/15/2019] [Accepted: 01/25/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND "Neuronal precursor cell expressed developmentally down-regulated 4-like" (NEDD4L) is considered a candidate gene for hypertension-both functionally and genetically-through the regulation of the ubiquitination of the epithelial sodium channel (ENaC). This study explores the relationship between genetic variation in NEDD4L and hypertension with chronic kidney disease (CKD) in the southeastern Han Chinese population. METHODS We recruited 623 CKD patients and measured ambulatory blood pressure monitoring (ABPM), and the rs4149601 and rs2288774 polymorphisms in NEDD4L were genotyped using quantitative polymerase chain reaction. RESULTS For rs4149601, significant differences in genotype frequencies in an additive model (GG vs. GA vs. AA) were observed between normotensive patients and hypertensive patients when hypertension was classified into ambulatory hypertension, clinical hypertension, and ambulatory systolic hypertension (P = 0.038, 0.005, and 0.006, respectively). In a recessive model (GG + GA vs. AA), the frequency of the AA genotype of rs4149601 in the hypertension groups was all higher than that in the normotensive groups. The genotype distribution of rs2288774 did not differ significantly between the normotensive and hypertensive patients. In both the full cohort and the propensity score matching (PSM) cohort, the AA genotype of rs4149601 (compared with the GG + GA genotype group) was independently correlated with ambulatory hypertension, clinical hypertension, and ambulatory systolic hypertension by multivariate logistic regression analysis. CONCLUSIONS The present study indicates that the AA genotype of rs4149601 associates with hypertension in CKD. Consequently, the rs4149601 A allele might be a risk factor for hypertension with CKD.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wen-yu Gong
- Division of Nephrology, Department of Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Man Liu
- Division of Gastroenterology and Hepatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenying Zhou
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jialing Rao
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuan-qing Li
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian-hao Wu
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan Luo
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Hui Peng
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Meyring-Wösten A, Luo Y, Zhang H, Preciado P, Thijssen S, Wang Y, Kotanko P. Intradialytic hypertension is associated with low intradialytic arterial oxygen saturation. Nephrol Dial Transplant 2019; 33:1040-1045. [PMID: 29186549 PMCID: PMC5982811 DOI: 10.1093/ndt/gfx309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/08/2017] [Indexed: 11/14/2022] Open
Abstract
Background The pathophysiology of a paradoxical systolic blood pressure (SBP) rise during hemodialysis (HD) is not yet fully understood. Recent research indicated that 10% of chronic HD patients suffer from prolonged intradialytic hypoxemia. Since hypoxemia induces a sympathetic response we entertained the hypothesis that peridialytic SBP change is associated with arterial oxygen saturation (SaO2). Methods We retrospectively analyzed intradialytic SaO2 and peridialytic SBP change in chronic HD patients with arteriovenous vascular access. Patients were followed for 6 months. We defined persistent intradialytic hypertension (piHTN) as average peridialytic SBP increase ≥10 mmHg over 6 months. Linear mixed effects (LME) models were used to explore associations between peridialytic SBP change and intradialytic SaO2 in univariate and adjusted analyses. Results We assessed 982 patients (29 872 HD treatments; 59% males; 53% whites). Pre-dialysis SBP was 146.7 ± 26.5 mmHg and decreased on average by 10.1 ± 24.5 mmHg. Fifty-three (5.7%) patients had piHTN. piHTN patients had lower intradialytic SaO2, body weight and interdialytic weight gain. LME models revealed that with every percentage point lower mean SaO2, the peridialytic SBP change increased by 0.46 mmHg (P < 0.001). This finding was corroborated in multivariate analyses. Conclusion We observed an inverse relationship between intradialytic SaO2 and the blood pressure response to HD. These findings support the notion that hypoxemia activates mechanisms that partially blunt the intradialytic blood pressure decline, possibly by sympathetic activation and endothelin-1 secretion. To further explore that hypothesis, specifically designed prospective studies are required.
Collapse
Affiliation(s)
| | - Ya Luo
- University of California at Santa Barbara, Department of Statistics and Applied Probability, Santa Barbara, CA, USA
| | - Hanjie Zhang
- Renal Research Institute, Research Department, New York, NY, USA
| | | | - Stephan Thijssen
- Renal Research Institute, Research Department, New York, NY, USA
| | - Yuedong Wang
- University of California at Santa Barbara, Department of Statistics and Applied Probability, Santa Barbara, CA, USA
| | - Peter Kotanko
- Renal Research Institute, Research Department, New York, NY, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Kidoguchi S, Sugano N, Takane K, Takahashi Y, Morisawa N, Yarita M, Hayashi-Ishikawa N, Tokudome G, Yokoo T. Azilsartan causes natriuresis due to its sympatholytic action in kidney disease. Hypertens Res 2019; 42:1507-1517. [PMID: 31138899 DOI: 10.1038/s41440-019-0271-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/09/2019] [Accepted: 04/20/2019] [Indexed: 11/09/2022]
Abstract
The sympathoinhibitory mechanism of azilsartan was investigated in an adenine-induced chronic renal failure model. Azilsartan exerted an antihypertensive effect, though BP elevation induced by adenine was marginal. The creatinine value was significantly lower in the azilsartan group (AZ) than in the vehicle group (VEH); furthermore, proteinuria was suppressed, and sodium excretion was augmented in the AZ group. The low frequency (LF) of systolic BP was suppressed (VEH: 4.07 ± 2.67 mmHg2 vs. AZ: 3.32 ± 1.93 mmHg2 P < 0.001), and the spontaneous baroreflex gain (sBRG) was augmented (VEH: 1.04 ± 0.62ms/mmHg vs. AZ: 1.38 ± 0.69 ms/mmHg, P < 0.001) in AZ. There were no significant differences in ACE1 and ACE2 expression between the groups, which indicated that the action of azilsartan on these components of the intrarenal renin-angiotensin-aldosterone system was comparatively small. Although NHE3, NKCC, and ENaC expression was similar between the groups, NaCl cotransporter (NCC) expression was markedly suppressed by azilsartan (P < 0.05). Thus, in a mild chronic kidney disease (CKD) model with slight BP elevation, the sympatholytic effect of ARB might be expected, and azilsartan might exert its natriuretic effect by NCC suppression achieved by sympathoinhibitory activity.
Collapse
Affiliation(s)
- Satoshi Kidoguchi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Naoki Sugano
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Koki Takane
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yasuhito Takahashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Norihiko Morisawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Miki Yarita
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Naomi Hayashi-Ishikawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Goro Tokudome
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
15
|
Smorschok MP, Sobierajski FM, Purdy GM, Riske LA, Busch SA, Skow RJ, Matenchuk BA, Pfoh JR, Vanden Berg ER, Linares A, Borle K, Lavoie L, Saran G, Dyck R, Funk DR, Day TA, Boulé NG, Davenport MH, Steinback CD. Peripheral chemoreceptor deactivation attenuates the sympathetic response to glucose ingestion. Appl Physiol Nutr Metab 2019; 44:389-396. [DOI: 10.1139/apnm-2018-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute increases in blood glucose are associated with heightened muscle sympathetic nerve activity (MSNA). Animal studies have implicated a role for peripheral chemoreceptors in this response, but this has not been examined in humans. Heart rate, cardiac output (CO), mean arterial pressure, total peripheral conductance, and blood glucose concentrations were collected in 11 participants. MSNA was recorded in a subset of 5 participants via microneurography. Participants came to the lab on 2 separate days (i.e., 1 control and 1 experimental day). On both days, participants ingested 75 g of glucose following baseline measurements. On the experimental day, participants breathed 100% oxygen for 3 min at baseline and again at 20, 40, and 60 min after glucose ingestion to deactivate peripheral chemoreceptors. Supplemental oxygen was not given to participants on the control day. There was a main effect of time on blood glucose (P < 0.001), heart rate (P < 0.001), CO (P < 0.001), sympathetic burst frequency (P < 0.001), burst incidence (P = 0.01), and total MSNA (P = 0.001) for both days. Blood glucose concentrations and burst frequency were positively correlated on the control day (r = 0.42; P = 0.03) and experimental day (r = 0.62; P = 0.003). There was a time × condition interaction (i.e., normoxia vs. hyperoxia) on burst frequency, in which hyperoxia significantly blunted burst frequency at 20 and 60 min after glucose ingestion only. Given that hyperoxia blunted burst frequency only during hyperglycemia, our results suggest that the peripheral chemoreceptors are involved in activating MSNA after glucose ingestion.
Collapse
Affiliation(s)
- Megan P. Smorschok
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Frances M. Sobierajski
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Graeme M. Purdy
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Laurel A. Riske
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Stephen A. Busch
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Rachel J. Skow
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Brittany A. Matenchuk
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jamie R. Pfoh
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Emily R. Vanden Berg
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Andrea Linares
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Kennedy Borle
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Lauren Lavoie
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Gurkarn Saran
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Rebecca Dyck
- Augustana Campus, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Deanna R. Funk
- Augustana Campus, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Trevor A. Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Normand G. Boulé
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Margie H. Davenport
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Craig D. Steinback
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
16
|
Saha M, Menuet C, Sun QJ, Burke PGR, Hildreth CM, Allen AM, Phillips JK. Respiratory sympathetic modulation is augmented in chronic kidney disease. Respir Physiol Neurobiol 2019; 262:57-66. [PMID: 30721752 DOI: 10.1016/j.resp.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 11/24/2022]
Abstract
Respiratory modulation of sympathetic nerve activity (respSNA) was studied in a hypertensive rodent model of chronic kidney disease (CKD) using Lewis Polycystic Kidney (LPK) rats and Lewis controls. In adult animals under in vivo anaesthetised conditions (n = 8-10/strain), respiratory modulation of splanchnic and renal nerve activity was compared under control conditions, and during peripheral (hypoxia), and central, chemoreceptor (hypercapnia) challenge. RespSNA was increased in the LPK vs. Lewis (area under curve (AUC) splanchnic and renal: 8.7 ± 1.1 vs. 3.5 ± 0.5 and 10.6 ± 1.1 vs. 7.1 ± 0.2 μV.s, respectively, P < 0.05). Hypoxia and hypercapnia increased respSNA in both strains but the magnitude of the response was greater in LPK, particularly in response to hypoxia. In juvenile animals studied using a working heart brainstem preparation (n = 7-10/strain), increased respSNA was evident in the LPK (thoracic SNA, AUC: 0.86 ± 0.1 vs. 0.42 ± 0.1 μV.s, P < 0.05), and activation of peripheral chemoreceptors (NaCN) again drove a larger increase in respSNA in the LPK with no difference in the response to hypercapnia. Amplified respSNA occurs in CKD and may contribute to the development of hypertension.
Collapse
Affiliation(s)
- Manash Saha
- Department of Biomedical Sciences, Macquarie University, Australia; Department of Nephrology, National Institute of Kidney Disease and Urology, Bangladesh; Graduate School of Medicine, Wollongong University, Australia; Department of Medicine, Wollongong Hospital, Australia
| | - Clement Menuet
- Department of Physiology, University of Melbourne, Australia; Institut de Neurobiologie de la Méditerranée, INMED UMR1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Qi-Jian Sun
- Department of Biomedical Sciences, Macquarie University, Australia
| | | | - Cara M Hildreth
- Department of Biomedical Sciences, Macquarie University, Australia
| | - Andrew M Allen
- Department of Physiology, University of Melbourne, Australia
| | | |
Collapse
|
17
|
Palm F, Koeners MP. Editorial: Hypoxia in Kidney Disease. Front Physiol 2018; 9:485. [PMID: 29773996 PMCID: PMC5943530 DOI: 10.3389/fphys.2018.00485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maarten P Koeners
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom.,School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Ow CPC, Ngo JP, Ullah MM, Hilliard LM, Evans RG. Renal hypoxia in kidney disease: Cause or consequence? Acta Physiol (Oxf) 2018; 222:e12999. [PMID: 29159875 DOI: 10.1111/apha.12999] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Tissue hypoxia has been proposed as an important factor in the pathophysiology of both chronic kidney disease (CKD) and acute kidney injury (AKI), initiating and propagating a vicious cycle of tubular injury, vascular rarefaction, and fibrosis and thus exacerbation of hypoxia. Here, we critically evaluate this proposition by systematically reviewing the literature relevant to the following six questions: (i) Is kidney disease always associated with tissue hypoxia? (ii) Does tissue hypoxia drive signalling cascades that lead to tissue damage and dysfunction? (iii) Does tissue hypoxia per se lead to kidney disease? (iv) Does tissue hypoxia precede pathology? (v) Does tissue hypoxia colocalize with pathology? (vi) Does prevention of tissue hypoxia prevent kidney disease? We conclude that tissue hypoxia is a common feature of both AKI and CKD. Furthermore, at least under in vitro conditions, renal tissue hypoxia drives signalling cascades that lead to tissue damage and dysfunction. Tissue hypoxia itself can lead to renal pathology, independent of other known risk factors for kidney disease. There is also some evidence that tissue hypoxia precedes renal pathology, at least in some forms of kidney disease. However, we have made relatively little progress in determining the spatial relationships between tissue hypoxia and pathological processes (i.e. colocalization) or whether therapies targeted to reduce tissue hypoxia can prevent or delay the progression of renal disease. Thus, the hypothesis that tissue hypoxia is a "common pathway" to both AKI and CKD still remains to be adequately tested.
Collapse
Affiliation(s)
- C. P. C. Ow
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - J. P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - M. M. Ullah
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - L. M. Hilliard
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - R. G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| |
Collapse
|
19
|
van der Bel R, Çalişkan M, van Hulst RA, van Lieshout JJ, Stroes ESG, Krediet CTP. Blood Pressure Increase during Oxygen Supplementation in Chronic Kidney Disease Patients Is Mediated by Vasoconstriction Independent of Baroreflex Function. Front Physiol 2017; 8:186. [PMID: 28424627 PMCID: PMC5371675 DOI: 10.3389/fphys.2017.00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 01/07/2023] Open
Abstract
Renal hypoxia is thought to be an important pathophysiological factor in the progression of chronic kidney disease (CKD) and the associated hypertension. In a previous study among CKD patients, supplementation with 100% oxygen reduced sympathetic nerve activity (SNA) and lowered blood pressure (BP). We aimed to assess the underlying haemodynamic modulation and hypothesized a decreased systemic vascular resistance (SVR). To that end, 19 CKD patients were studied during 15-min intervals of increasing partial oxygen pressure (ppO2) from room air (0.21 ATA) to 1.0 ATA and further up to 2.4 ATA, while continuously measuring finger arterial blood pressure (Finapres). Off-line, we derived indexes of SVR, cardiac output (CO) and baroreflex sensitivity from the continuous BP recordings (Modelflow). During oxygen supplementation, systolic, and diastolic BP both increased dose-dependently from 128 ± 24 and 72 ± 19 mmHg respectively at baseline to 141 ± 23 (p < 0.001) and 80 ± 21 mmHg (p < 0.001) at 1.0 ATA oxygen. Comparing baseline and 1.0 ATA oxygen, SVR increased from 1440 ± 546 to 1745 ± 710 dyn·s/cm5 (p = 0.009), heart rate decreased from 60 ± 8 to 58 ± 6 bpm (p < 0.001) and CO from 5.0 ± 1.3 to 4.6 ± 1.1 L/min (p = 0.02). Baroreflex sensitivity remained unchanged (13 ± 13 to 15 ± 12 ms/mmHg). These blood pressure effects were absent in a negative control group of eight young healthy subjects. We conclude that oxygen supplementation in CKD patients causes a non-baroreflex mediated increased in SVR and blood pressure.
Collapse
Affiliation(s)
- René van der Bel
- Department of Internal Medicine, Academic Medical Center at the University of AmsterdamAmsterdam, Netherlands
| | - Müşerref Çalişkan
- Department of Internal Medicine, Academic Medical Center at the University of AmsterdamAmsterdam, Netherlands
| | - Robert A van Hulst
- Department of Hyperbaric Medicine, Academic Medical Center at the University of AmsterdamAmsterdam, Netherlands
| | - Johannes J van Lieshout
- Department of Internal Medicine, Academic Medical Center at the University of AmsterdamAmsterdam, Netherlands.,MRC-Arthritis Research UK Centre of Musculoskeletal Ageing Research, School of Life Sciences, Medical School, University of Nottingham, Queen's Medical CentreNottingham, UK
| | - Erik S G Stroes
- Department of Internal Medicine, Academic Medical Center at the University of AmsterdamAmsterdam, Netherlands
| | - C T Paul Krediet
- Department of Internal Medicine, Academic Medical Center at the University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
20
|
Salman IM, Hildreth CM, Phillips JK. Chronic kidney disease impairs renal nerve and haemodynamic reflex responses to vagal afferent input through a central mechanism. Auton Neurosci 2016; 204:65-73. [PMID: 27776979 DOI: 10.1016/j.autneu.2016.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/20/2016] [Accepted: 10/08/2016] [Indexed: 11/25/2022]
Abstract
We investigated age- and sex-related changes in reflex renal sympathetic nerve activity (RSNA) and haemodynamic responses to vagal afferent stimulation in a rodent model of chronic kidney disease (CKD). Using anaesthetised juvenile (7-8weeks) and adult (12-13weeks) Lewis Polycystic Kidney (LPK) and Lewis control rats of either sex (n=63 total), reflex changes in RSNA, heart rate (HR) and mean arterial pressure (MAP) to vagal afferent stimulation (5-s train, 4.0V, 2.0-ms pulses, 1-16Hz) were measured. In all groups, stimulation of the vagal afferents below 16Hz produced frequency-dependent reductions in RSNA, HR and MAP, while a 16Hz stimulus produced an initial sympathoinhibition followed by sympathoexcitation. In juvenile LPK versus age-matched Lewis, sympathoinhibition was reduced when responses were expressed as % baseline (P<0.05), but not as microvolts, while bradycardic responses were greater. Reflex depressor responses were greater (P=0.015) only in juvenile female LPK. In adult LPK, reflex sympathoinhibition (%) was blunted (P<0.05), and an age-related decline apparent (when expressed as microvolts). Reflex reductions in HR and MAP were only diminished (P<0.05) in adult female LPK versus age-matched Lewis. Peak reflex sympathoexcitation at 16Hz did not differ between groups; however, area under the curve values were greater in the LPK versus Lewis (overall, 9±1 versus 19±3μVs, P<0.05) irrespective of age, suggestive of enhanced sympathoexcitatory drive in the LPK. Our data demonstrates a progressive deficit in the central processing of vagal afferent input and a differential sex influence on reflex regulation of autonomic function and blood pressure homeostasis in CKD.
Collapse
Affiliation(s)
- Ibrahim M Salman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Cara M Hildreth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Autonomic outcome is better after endarterectomy than after stenting in patients with asymptomatic carotid stenosis. J Vasc Surg 2016; 64:975-84. [DOI: 10.1016/j.jvs.2016.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
|
22
|
Mozer MT, Holbein WW, Joyner MJ, Curry TB, Limberg JK. Reductions in carotid chemoreceptor activity with low-dose dopamine improves baroreflex control of heart rate during hypoxia in humans. Physiol Rep 2016; 4:e12859. [PMID: 27418545 PMCID: PMC4945841 DOI: 10.14814/phy2.12859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/13/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022] Open
Abstract
The purpose of the present investigation was to examine the contribution of the carotid body chemoreceptors to changes in baroreflex control of heart rate with exposure to hypoxia. We hypothesized spontaneous cardiac baroreflex sensitivity (scBRS) would be reduced with hypoxia and this effect would be blunted when carotid chemoreceptor activity was reduced with low-dose dopamine. Fifteen healthy adults (11 M/4 F) completed two visits randomized to intravenous dopamine or placebo (saline). On each visit, subjects were exposed to 5-min normoxia (~99% SpO2), followed by 5-min hypoxia (~84% SpO2). Blood pressure (intra-arterial catheter) and heart rate (ECG) were measured continuously and scBRS was assessed by spectrum and sequence methodologies. scBRS was reduced with hypoxia (P < 0.01). Using the spectrum analysis approach, the fall in scBRS with hypoxia was attenuated with infusion of low-dose dopamine (P < 0.01). The decrease in baroreflex sensitivity to rising pressures (scBRS "up-up") was also attenuated with low-dose dopamine (P < 0.05). However, dopamine did not attenuate the decrease in baroreflex sensitivity to falling pressures (scBRS "down-down"; P > 0.05). Present findings are consistent with a reduction in scBRS with systemic hypoxia. Furthermore, we show this effect is partially mediated by the carotid body chemoreceptors, given the fall in scBRS is attenuated when activity of the chemoreceptors is reduced with low-dose dopamine. However, the improvement in scBRS with dopamine appears to be specific to rising blood pressures. These results may have important implications for impairments in baroreflex function common in disease states of acute and/or chronic hypoxemia, as well as the experimental use of dopamine to assess such changes.
Collapse
Affiliation(s)
- Michael T Mozer
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
23
|
Ardell JL, Andresen MC, Armour JA, Billman GE, Chen PS, Foreman RD, Herring N, O'Leary DS, Sabbah HN, Schultz HD, Sunagawa K, Zucker IH. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol 2016; 594:3877-909. [PMID: 27098459 DOI: 10.1113/jp271869] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.
Collapse
Affiliation(s)
- J L Ardell
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - M C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - J A Armour
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - G E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - P-S Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R D Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D S O'Leary
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - H N Sabbah
- Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - H D Schultz
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Sunagawa
- Department of Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - I H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
24
|
Koeners MP, Lewis KE, Ford AP, Paton JF. Hypertension: a problem of organ blood flow supply-demand mismatch. Future Cardiol 2016; 12:339-49. [PMID: 27091483 PMCID: PMC4926521 DOI: 10.2217/fca.16.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review introduces a new hypothesis that sympathetically mediated hypertensive diseases are caused, in the most part, by the activation of visceral afferent systems that are connected to neural circuits generating sympathetic activity. We consider how organ hypoperfusion and blood flow supply–demand mismatch might lead to both sensory hyper-reflexia and aberrant afferent tonicity. We discuss how this may drive sympatho-excitatory-positive feedback and extend across multiple organs initiating, or at least amplifying, sympathetic hyperactivity. The latter, in turn, compounds the challenge to sufficient organ blood flow through heightened vasoconstriction that both maintains and exacerbates hypertension.
Collapse
Affiliation(s)
- Maarten P Koeners
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Kirsty E Lewis
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Anthony P Ford
- Afferent Pharmaceuticals, 2929 Campus Drive, San Mateo, CA, USA
| | - Julian Fr Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
25
|
Salman IM. Current Approaches to Quantifying Tonic and Reflex Autonomic Outflows Controlling Cardiovascular Function in Humans and Experimental Animals. Curr Hypertens Rep 2016; 17:84. [PMID: 26363932 DOI: 10.1007/s11906-015-0597-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of the autonomic nervous system in the pathophysiology of human and experimental models of cardiovascular disease is well established. In the recent years, there have been some rapid developments in the diagnostic approaches used to assess and monitor autonomic functions. Although most of these methods are devoted for research purposes in laboratory animals, many have still found their way to routine clinical practice. To name a few, direct long-term telemetry recording of sympathetic nerve activity (SNA) in rodents, single-unit SNA recording using microneurography in human subjects and spectral analysis of blood pressure and heart rate in both humans and animals have recently received an overwhelming attention. In this article, we therefore provide an overview of the methods and techniques used to assess tonic and reflex autonomic functions in humans and experimental animals, highlighting current advances available and procedure description, limitations and usefulness for diagnostic purposes.
Collapse
Affiliation(s)
- Ibrahim M Salman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
26
|
Giannoni A, Mirizzi G, Aimo A, Emdin M, Passino C. Peripheral reflex feedbacks in chronic heart failure: Is it time for a direct treatment? World J Cardiol 2015; 7:824-828. [PMID: 26730288 PMCID: PMC4691809 DOI: 10.4330/wjc.v7.i12.824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/21/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Despite repeated attempts to develop a unifying hypothesis that explains the clinical syndrome of heart failure (HF), no single conceptual paradigm for HF has withstood the test of time. The last model that has been developed, the neurohormonal model, has the great virtue of highlighting the role of the heart as an endocrine organ, as well as to shed some light on the key role on HF progression of neurohormones and peripheral organs and tissues beyond the heart itself. However, while survival in clinical trials based on neurohormonal antagonist drugs has improved, HF currently remains a lethal condition. At the borders of the neurohormonal model of HF, a partially unexplored path trough the maze of HF pathophysiology is represented by the feedback systems. There are several evidences, from both animal studies and humans reports, that the deregulation of baro-, ergo- and chemo-reflexes in HF patients elicits autonomic imbalance associated with parasympathetic withdrawal and increased adrenergic drive to the heart, thus fundamentally contributing to the evolution of the disease. Hence, on top of guideline-recommended medical therapy, mainly based on neurohormonal antagonisms, all visceral feedbacks have been recently considered in HF patients as additional potential therapeutic targets.
Collapse
|
27
|
Salman IM, Sarma Kandukuri D, Harrison JL, Hildreth CM, Phillips JK. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease. Front Physiol 2015; 6:218. [PMID: 26300784 PMCID: PMC4523722 DOI: 10.3389/fphys.2015.00218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/05/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK) rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n = 16) were instrumented for telemetric recording of RSNA and MAP. At 12–13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2) and central chemoreflex (hypercapnia: 7% CO2) activation and acute stress (open-field exposure), were measured. As indicators of renal function, urinary protein (UPro) and creatinine (UCr) levels were assessed. LPK rats had higher resting RSNA (1.2 ± 0.1 vs. 0.6 ± 0.1 μV, p < 0.05) and MAP (151 ± 8 vs. 97 ± 2 mmHg, p < 0.05) compared to Lewis. MAP was negatively correlated with UCr (r = −0.80, p = 0.002) and positively correlated with RSNA (r = 0.66, p = 0.014), with multiple linear regression modeling indicating the strongest correlation was with Ucr. RSNA and MAP responses to activation of the central chemoreflex and open-field stress were reduced in the LPK relative to the Lewis (all p < 0.05). This is the first description of dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways.
Collapse
Affiliation(s)
- Ibrahim M Salman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Divya Sarma Kandukuri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Joanne L Harrison
- School of Veterinary and Life Sciences, Murdoch University Murdoch, WA, Australia
| | - Cara M Hildreth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
28
|
The effect of losartan on differential reflex control of sympathetic nerve activity in chronic kidney disease. J Hypertens 2015; 33:1249-60. [DOI: 10.1097/hjh.0000000000000535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Marcus NJ, Pügge C, Mediratta J, Schiller AM, Del Rio R, Zucker IH, Schultz HD. Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure. Am J Physiol Heart Circ Physiol 2015; 309:H259-66. [PMID: 26001414 DOI: 10.1152/ajpheart.00268.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/18/2015] [Indexed: 01/10/2023]
Abstract
In chronic heart failure (CHF), carotid body chemoreceptor (CBC) activity is increased and contributes to increased tonic and hypoxia-evoked elevation in renal sympathetic nerve activity (RSNA). Elevated RSNA and reduced renal perfusion may contribute to development of the cardio-renal syndrome in CHF. Exercise training (EXT) has been shown to abrogate CBC-mediated increases in RSNA in experimental heart failure; however, the effect of EXT on CBC control of renal blood flow (RBF) is undetermined. We hypothesized that CBCs contribute to tonic reductions in RBF in CHF, that stimulation of the CBC with hypoxia would result in exaggerated reductions in RBF, and that these responses would be attenuated with EXT. RBF was measured in CHF-sedentary (SED), CHF-EXT, CHF-carotid body denervation (CBD), and CHF-renal denervation (RDNX) groups. We measured RBF at rest and in response to hypoxia (FiO2 10%). All animals exhibited similar reductions in ejection fraction and fractional shortening as well as increases in ventricular systolic and diastolic volumes. Resting RBF was lower in CHF-SED (29 ± 2 ml/min) than in CHF-EXT animals (46 ± 2 ml/min, P < 0.05) or in CHF-CBD animals (42 ± 6 ml/min, P < 0.05). In CHF-SED, RBF decreased during hypoxia, and this was prevented in CHF-EXT animals. Both CBD and RDNX abolished the RBF response to hypoxia in CHF. Mean arterial pressure increased in response to hypoxia in CHF-SED, but was prevented by EXT, CBD, and RDNX. EXT is effective in attenuating chemoreflex-mediated tonic and hypoxia-evoked reductions in RBF in CHF.
Collapse
Affiliation(s)
- Noah J Marcus
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Carolin Pügge
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Jai Mediratta
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Alicia M Schiller
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Rodrigo Del Rio
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| |
Collapse
|
30
|
Marcus NJ, Del Rio R, Schultz HD. Central role of carotid body chemoreceptors in disordered breathing and cardiorenal dysfunction in chronic heart failure. Front Physiol 2014; 5:438. [PMID: 25505417 PMCID: PMC4241833 DOI: 10.3389/fphys.2014.00438] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/27/2014] [Indexed: 11/13/2022] Open
Abstract
Oscillatory breathing (OB) patterns are observed in pre-term infants, patients with cardio-renal impairment, and in otherwise healthy humans exposed to high altitude. Enhanced carotid body (CB) chemoreflex sensitivity is common to all of these populations and is thought to contribute to these abnormal patterns by destabilizing the respiratory control system. OB patterns in chronic heart failure (CHF) patients are associated with greater levels of tonic and chemoreflex-evoked sympathetic nerve activity (SNA), which is associated with greater morbidity and poor prognosis. Enhanced chemoreflex drive may contribute to tonic elevations in SNA by strengthening the relationship between respiratory and sympathetic neural outflow. Elimination of CB afferents in experimental models of CHF has been shown to reduce OB, respiratory-sympathetic coupling, and renal SNA, and to improve autonomic balance in the heart. The CB chemoreceptors may play an important role in progression of CHF by contributing to respiratory instability and OB, which in turn further exacerbates tonic and chemoreflex-evoked increases in SNA to the heart and kidney.
Collapse
Affiliation(s)
- Noah J Marcus
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
31
|
Ow CPC, Abdelkader A, Hilliard LM, Phillips JK, Evans RG. Determinants of renal tissue hypoxia in a rat model of polycystic kidney disease. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1207-15. [DOI: 10.1152/ajpregu.00202.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Renal tissue oxygen tension (Po2) and its determinants have not been quantified in polycystic kidney disease (PKD). Therefore, we measured kidney tissue Po2 in the Lewis rat model of PKD (LPK) and in Lewis control rats. We also determined the relative contributions of altered renal oxygen delivery and consumption to renal tissue hypoxia in LPK rats. Po2 of the superficial cortex of 11- to 13-wk-old LPK rats, measured by Clark electrode with the rat under anesthesia, was higher within the cysts (32.8 ± 4.0 mmHg) than the superficial cortical parenchyma (18.3 ± 3.5 mmHg). Po2 in the superficial cortical parenchyma of Lewis rats was 2.5-fold greater (46.0 ± 3.1 mmHg) than in LPK rats. At each depth below the cortical surface, tissue Po2 in LPK rats was approximately half that in Lewis rats. Renal blood flow was 60% less in LPK than in Lewis rats, and arterial hemoglobin concentration was 57% less, so renal oxygen delivery was 78% less. Renal venous Po2 was 38% less in LPK than Lewis rats. Sodium reabsorption was 98% less in LPK than Lewis rats, but renal oxygen consumption did not significantly differ between the two groups. Thus, in this model of PKD, kidney tissue is severely hypoxic, at least partly because of deficient renal oxygen delivery. Nevertheless, the observation of similar renal oxygen consumption, despite markedly less sodium reabsorption, in the kidneys of LPK compared with Lewis rats, indicates the presence of inappropriately high oxygen consumption in the polycystic kidney.
Collapse
Affiliation(s)
- Connie P. C. Ow
- Department of Physiology Monash University, Melbourne, Australia; and
| | - Amany Abdelkader
- Department of Physiology Monash University, Melbourne, Australia; and
| | | | | | - Roger G. Evans
- Department of Physiology Monash University, Melbourne, Australia; and
| |
Collapse
|
32
|
Böhm M, Linz D, Ukena C, Esler M, Mahfoud F. Renal Denervation for the Treatment of Cardiovascular High Risk-Hypertension or Beyond? Circ Res 2014; 115:400-9. [DOI: 10.1161/circresaha.115.302522] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Böhm
- From the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (M.B., D.L., C.U., F.M.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.E.)
| | - Dominik Linz
- From the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (M.B., D.L., C.U., F.M.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.E.)
| | - Christian Ukena
- From the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (M.B., D.L., C.U., F.M.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.E.)
| | - Murray Esler
- From the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (M.B., D.L., C.U., F.M.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.E.)
| | - Felix Mahfoud
- From the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (M.B., D.L., C.U., F.M.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.E.)
| |
Collapse
|
33
|
Schultz HD, Marcus NJ, Del Rio R. Role of the carotid body in the pathophysiology of heart failure. Curr Hypertens Rep 2014; 15:356-62. [PMID: 23824499 DOI: 10.1007/s11906-013-0368-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Important recent advances implicate a role of the carotid body (CB) chemoreflex in sympathetic and breathing dysregulation in several cardio-respiratory diseases, drawing renewed interest in its potential implications for clinical treatment. Evidence from both chronic heart failure (CHF) patients and animal models indicates that the CB chemoreflex is enhanced in CHF, and contributes to the tonic elevation in sympathetic nerve activity (SNA) and periodic breathing associated with the disease. Although this maladaptive change likely derives from altered function at all levels of the reflex arc, a change in afferent function of the CB is likely to be a main driving force. This review will focus on recent advances in our understanding of the pathophysiological mechanisms that alter CB function in CHF and their potential translational impact on treatment of chronic heart failure (CHF).
Collapse
Affiliation(s)
- Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| | | | | |
Collapse
|
34
|
Stabilization of hypoxia inducible factor-1α ameliorates acute renal neurogenic hypertension. J Hypertens 2014; 32:587-97. [DOI: 10.1097/hjh.0000000000000060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Angiotensin receptor blockers regulate the synchronization of circadian rhythms in heart rate and blood pressure. J Hypertens 2014; 31:1233-8. [PMID: 23511341 DOI: 10.1097/hjh.0b013e32836043c9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The sympathetic nervous system plays an important role in blood pressure regulation even in the early stages of chronic kidney disease (CKD). METHODS To understand the role of the sympathetic system, we examined the relationship between day/night ratios of both heart rate (HR) and mean arterial pressure (MAP) as well as HR variability (HRV, SD) before and during an 8-week treatment with the angiotensin II receptor blocker (ARB), olmesartan, in 45 patients with CKD. RESULTS The day/night HR ratio strongly correlated with the day/night MAP ratio before and during ARB treatment. The ratio of [day/night HR ratio] over [day/night MAP ratio] was increased as renal function deteriorated at baseline (r = -0.31, P = 0.04), and it was attenuated (1.10 ± 0.10 to 1.06 ± 0.10; P = 0.04) and became independent of renal function during ARB treatment (r = -0.04, P = 0.8). ARB increased both the day/night HR ratio (1.17 ± 0.09 to 1.21 ± 0.13; P = 0.04) and HRV (10.6 ± 2.9 to 11.7 ± 4.2; P = 0.04), which were lower when baseline renal function deteriorated. CONCLUSION The present study indicates that there exists a close correlation in circadian rhythms between HR and MAP in CKD. Synchronization between the two rhythms was progressively lost as renal function deteriorated, and ARB partly restored the synchronization. These findings suggest that the sympathetic nervous system is activated as renal function deteriorates, and ARB may suppress its activation.
Collapse
|
36
|
|
37
|
Bates MGD, Newman JH, Jakovljevic DG, Hollingsworth KG, Alston CL, Zalewski P, Klawe JJ, Blamire AM, MacGowan GA, Keavney BD, Bourke JP, Schaefer A, McFarland R, Newton JL, Turnbull DM, Taylor RW, Trenell MI, Gorman GS. Defining cardiac adaptations and safety of endurance training in patients with m.3243A>G-related mitochondrial disease. Int J Cardiol 2013; 168:3599-608. [PMID: 23742928 PMCID: PMC3819621 DOI: 10.1016/j.ijcard.2013.05.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/04/2013] [Indexed: 01/14/2023]
Abstract
Background Cardiac hypertrophic remodelling and systolic dysfunction are common in patients with mitochondrial disease and independent predictors of morbidity and early mortality. Endurance exercise training improves symptoms and skeletal muscle function, yet cardiac adaptations are unknown. Methods and results Before and after 16-weeks of training, exercise capacity, cardiac magnetic resonance imaging and phosphorus-31 spectroscopy, disease burden, fatigue, quality of life, heart rate variability (HRV) and blood pressure variability (BPV) were assessed in 10 adult patients with m.3243A>G-related mitochondrial disease, and compared to age- and gender-matched sedentary control subjects. At baseline, patients had increased left ventricular mass index (LVMI, p < 0.05) and LV mass to end-diastolic volume ratio, and decreased longitudinal shortening and myocardial phosphocreatine/adenosine triphosphate ratio (all p < 0.01). Peak arterial–venous oxygen difference (p < 0.05), oxygen uptake (VO2) and power were decreased in patients (both p < 0.01) with no significant difference in cardiac power output. All patients remained stable and completed ≥ 80% sessions. With training, there were similar proportional increases in peak VO2, anaerobic threshold and work capacity in patients and controls. LVMI increased in both groups (p < 0.01), with no significant effect on myocardial function or bioenergetics. Pre- and post-exercise training, HRV and BPV demonstrated increased low frequency and decreased high frequency components in patients compared to controls (all p < 0.05). Conclusion Patients with mitochondrial disease and controls achieved similar proportional benefits of exercise training, without evidence of disease progression, or deleterious effects on cardiac function. Reduced exercise capacity is largely mediated through skeletal muscle dysfunction at baseline and sympathetic over-activation may be important in pathogenesis.
Collapse
Affiliation(s)
- Matthew G D Bates
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Relationship between heart rate variability, blood pressure and arterial wall properties during air and oxygen breathing in healthy subjects. Auton Neurosci 2013; 178:60-6. [PMID: 23683801 DOI: 10.1016/j.autneu.2013.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/23/2013] [Accepted: 04/18/2013] [Indexed: 11/21/2022]
Abstract
Previous studies reported that normobaric hyperoxia influences heart rate, arterial pressure, cardiac output and systemic vascular resistance, but the mechanisms underlying these changes are still not fully understood. Several factors are considered including degeneration of endothelium-derived nitric oxide by reactive oxygen species, the impact of oxygen-free radicals on tissues and alterations of autonomic nervous system function. Recently, new devices for the detailed non-invasive assessment of large and small arteries have been developed. Therefore, the aim of our study was to assess heart rate variability (HRV) as a potential indicator of autonomic balance and its relation to blood pressure and vascular properties during medical air (MAB) and 100% oxygen breathing (OXB) in healthy volunteers. In 12 healthy subjects we assessed heart rate and blood pressure variability, baroreflex sensitivity, respiratory frequency, common carotid artery diameter and its wall distensibility, as well as changes in the digital artery pulse waveform, stroke index and systemic vascular resistance during MAB and OXB. Mean and systolic blood pressure have increased significantly while digital pulse amplitude and carotid artery diameter were significantly lower during hyperoxia. Heart rate variability measures did not differ during MAB and OXB. However, the correlations between spectral HRV components and those hemodynamic parameters which have changed due to hyperoxia varied substantially during MAB (correlated significantly) and OXB (no significant correlations were noted). Our findings suggest that autonomic nervous system might not be the main mediator of the cardiovascular changes during 100% oxygen breathing in healthy subjects. It seems that the direct vascular responses are initial consequences of hyperoxia and other cardiovascular parameter alterations are secondary to them.
Collapse
|
39
|
Hering D, Esler MD, Schlaich MP. Chronic kidney disease: role of sympathetic nervous system activation and potential benefits of renal denervation. EUROINTERVENTION 2013; 9 Suppl R:R127-35. [DOI: 10.4244/eijv9sra22] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Evans RG, Ince C, Joles JA, Smith DW, May CN, O'Connor PM, Gardiner BS. Haemodynamic influences on kidney oxygenation: Clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 2013; 40:106-22. [DOI: 10.1111/1440-1681.12031] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/21/2012] [Accepted: 11/15/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Roger G Evans
- Department of Physiology; Monash University; Melbourne; Victoria; Australia
| | - Can Ince
- Department of Translational Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension; University Medical Center; Utrecht; The Netherlands
| | - David W Smith
- School of Computer Science and Software Engineering; The University of Western Australia; Perth; Western Australia; Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Melbourne; Victoria; Australia
| | - Paul M O'Connor
- Department of Physiology; Georgia Health Sciences University; Augusta; GA; USA
| | - Bruce S Gardiner
- School of Computer Science and Software Engineering; The University of Western Australia; Perth; Western Australia; Australia
| |
Collapse
|
41
|
McBryde FD, Abdala AP, Hendy EB, Pijacka W, Marvar P, Moraes DJA, Sobotka PA, Paton JFR. The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun 2013; 4:2395. [PMID: 24002774 DOI: 10.1038/ncomms3395] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/02/2013] [Indexed: 01/19/2023] Open
Abstract
In the spontaneously hypertensive (SH) rat, hyperoxic inactivation of the carotid body (CB) produces a rapid and pronounced fall in both arterial pressure and renal sympathetic nerve activity (RSA). Here we show that CB de-afferentation through carotid sinus nerve denervation (CSD) reduces the overactive sympathetic activity in SH rats, providing an effective antihypertensive treatment. We demonstrate that CSD lowers RSA chronically and that this is accompanied by a depressor response in SH but not normotensive rats. The drop in blood pressure is not dependent on renal nerve integrity but mechanistically accompanied by a resetting of the RSA-baroreflex function curve, sensitization of the cardiac baroreflex, changes in renal excretory function and reduced T-lymphocyte infiltration. We further show that combined with renal denervation, CSD remains effective, producing a summative response indicative of an independent mechanism. Our findings indicate that CB de-afferentation is an effective means for robust and sustained sympathoinhibition, which could translate to patients with neurogenic hypertension.
Collapse
Affiliation(s)
- Fiona D McBryde
- School of Physiology and Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, England
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schultz HD, Del Rio R, Ding Y, Marcus NJ. Role of neurotransmitter gases in the control of the carotid body in heart failure. Respir Physiol Neurobiol 2012; 184:197-203. [PMID: 22842006 DOI: 10.1016/j.resp.2012.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 02/06/2023]
Abstract
The peripheral arterial chemoreflex, arising primarily from the carotid body in most species, plays an important role in the control of breathing and in autonomic control of cardiovascular function. The peripheral chemoreflex is enhanced in heart failure patients and animal models of heart failure and contributes to the sympathetic hyperactivity and breathing instability that exacerbates the progression of the disease. Studies in animal models have shown that carotid body chemoreceptor activity is enhanced under both normoxic and hypoxic conditions in heart failure due to disruption of local mediators that control carotid body function. This brief review highlights evidence that the alterations in the gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide in the carotid body contribute to the exaggerated carotid body function observed in heart failure.
Collapse
Affiliation(s)
- Harold D Schultz
- Department of Integrative/Cellular Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States.
| | | | | | | |
Collapse
|
43
|
|
44
|
Rubinger D, Backenroth R, Sapoznikov D. Sympathetic activation and baroreflex function during intradialytic hypertensive episodes. PLoS One 2012; 7:e36943. [PMID: 22629345 PMCID: PMC3358286 DOI: 10.1371/journal.pone.0036943] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/16/2012] [Indexed: 02/07/2023] Open
Abstract
Background The mechanisms of intradialytic increases in blood pressure are not well defined. The present study was undertaken to assess the role of autonomic nervous system activation during intradialytic hypertensive episodes. Methodology/Principal Findings Continuous interbeat intervals (IBI) and systolic blood pressure (SBP) were monitored during hemodialysis in 108 chronic patients. Intradialytic hypertensive episodes defined as a period of at least 10 mmHg increase in SBP between the beginning and the end of a dialysis session or hypertension resistant to ultrafiltration occurring during or immediately after the dialysis procedure, were detected in 62 out of 113 hemodialysis sessions. SBP variability, IBI variability and baroreceptor sensitivity (BRS) in the low (LF) and high (HF) frequency ranges were assessed using the complex demodulation technique (CDM). Intradialytic hypertensive episodes were associated with an increased (n = 45) or decreased (n = 17) heart rate. The maximal blood pressure was similar in both groups. In patients with increased heart rate the increase in blood pressure was associated with marked increases in SBP and IBI variability, with suppressed BRS indices and enhanced sympatho-vagal balance. In contrast, in those with decreased heart rate, there were no significant changes in the above parameters. End-of- dialysis blood pressure in all sessions associated with hypertensive episode was significantly higher than in those without such episodes. In logistic regression analysis, predialysis BRS in the low frequency range was found to be the main predictor of intradialytic hypertension. Conclusion/Significance Our data point to sympathetic overactivity with feed-forward blood pressure enhancement as an important mechanism of intradialytic hypertension in a significant proportion of patients. The triggers of increased sympathetic activity during hemodialysis remain to be determined. Intradialytic hypertensive episodes are associated with higher end-of- dialysis blood pressure, suggesting that intradialytic hypertension may play a role in generation of interdialytic hypertension.
Collapse
Affiliation(s)
- Dvora Rubinger
- Nephrology and Hypertension Services, Department of Medicine, Hadassah University Medical Center, Jerusalem, Israel.
| | | | | |
Collapse
|
45
|
Peripheral chemoreflex activation contributes to sympathetic baroreflex impairment in chronic heart failure. J Hypertens 2012; 30:753-60. [DOI: 10.1097/hjh.0b013e328350136c] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Vink EE, Blankestijn PJ. Evidence and consequences of the central role of the kidneys in the pathophysiology of sympathetic hyperactivity. Front Physiol 2012; 3:29. [PMID: 22363298 PMCID: PMC3282535 DOI: 10.3389/fphys.2012.00029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/06/2012] [Indexed: 01/19/2023] Open
Abstract
Chronic elevation of the sympathetic nervous system has been identified as a major contributor to the complex pathophysiology of hypertension, states of volume overload – such as heart failure – and progressive kidney disease. It is also a strong determinant for clinical outcome. This review focuses on the central role of the kidneys in the pathogenesis of sympathetic hyperactivity. As a consequence, renal denervation may be an attractive option to treat sympathetic hyperactivity. The review will also focus on first results and the still remaining questions of this new treatment option.
Collapse
Affiliation(s)
- Eva E Vink
- Department of Nephrology, University Medical Center Utrecht Utrecht, Netherlands
| | | |
Collapse
|
47
|
Siński M, Lewandowski J, Przybylski J, Bidiuk J, Abramczyk P, Ciarka A, Gaciong Z. Tonic activity of carotid body chemoreceptors contributes to the increased sympathetic drive in essential hypertension. Hypertens Res 2011; 35:487-91. [PMID: 22158114 DOI: 10.1038/hr.2011.209] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carotid chemoreceptors provoke an increase in muscle sympathetic nerve activation (MSNA) in response to hypoxia; they are also tonically active during normoxic breathing. The contribution of peripheral chemoreceptors to sympathetic activation in hypertension is incompletely understood. The aim of our study was to investigate the effect of chemoreceptor deactivation on sympathetic activity in untreated patients with hypertension. A total of 12 untreated hypertensive males and 11 male controls participated in this randomized, crossover, placebo-controlled study. MSNA, systolic blood pressure(BP), diastolic BP, heart rate (HR), electrocardiogram, hemoglobin oxygen saturation (Sat%) and respiratory movements were measured during repeated 10-min periods of respiration with 100% oxygen or 21% oxygen in a blinded fashion. Compared with controls, hypertensives had higher resting MSNA (38 ± 10 vs. 29 ± 0.9 burst per min, P<0.05), systolic BP (150 ± 12 vs. 124 ± 10 mm Hg, P< 0.001) and diastolic BP (92 ± 10 vs. 77 ± 9 mm Hg, P<0.005). Breathing 100% oxygen caused significant decrease in MSNA in hypertensive patients (38 ± 10 vs. 26 ± 8 burst per min and 100 ± 0 vs. 90 ± 10 arbitrary units, P<0.05) and no change in controls (29 ± 9 vs. 27 ± 7 burst per min and 100 ± 0 vs. 96 ± 11 arbitrary units). BP, respiratory frequency and end tidal CO(2) did not change during chemoreceptor deactivation with hyperoxia. HR decreased and Sat% increased in both the study groups. These results confirm the role of tonic chemoreceptor drive in the development of sympathetic overactivity in hypertension.
Collapse
Affiliation(s)
- Maciej Siński
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Shinzawa M, Yamamoto R, Nagasawa Y, Shoji T, Obi Y, Namba T, Kitamura H, Kaneko T, Okada N, Iwatani H, Yamauchi A, Tsubakihara Y, Imai E, Isaka Y, Rakugi H. Gene polymorphisms contributing to hypertension in immunoglobulin A nephropathy. Clin Exp Nephrol 2011; 16:250-8. [PMID: 22072187 DOI: 10.1007/s10157-011-0553-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 10/14/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hypertension, which is affected by genetic and environmental factors, is one of the major risk factors for chronic kidney disease. Identification of the genetic factor contributing to hypertension in patients with chronic kidney disease may potentially refine a therapeutic strategy. METHODS In the present multicenter cross-sectional study, 240 patients were eligible (aged 15-50 years with urinary protein ≥0.25 g/day) out of 429 patients who were diagnosed as having immunoglobulin (Ig) A nephropathy (IgAN) by renal biopsy between 1990 and 2005 and enrolled in our previous study, PREDICT-IgAN. The outcome was hypertension defined as ≥140 and/or ≥90 mmHg of systolic and diastolic blood pressure and/or use of antihypertensives at renal biopsy. We assessed associations between hypertension and 28 polymorphisms with the frequency of minor genotype ≥10% among 100 atherosclerosis-related polymorphisms using the Chi-squared test in dominant and recessive models. We identified polymorphisms associated with hypertension in multivariate logistic regression models. RESULTS Baseline characteristics: hypertension 36.3%. Among 28 polymorphisms, the Chi-squared test revealed that CD14 (-159CC vs CT/TT, P = 0.03) and ACE (DD vs DI/II, P = 0.03) were significantly associated with hypertension after Bonferroni correction. Multivariate logistic regression models revealed that CD14 -159CC [vs CT/TT, odds ratio (OR) 3.58 (95% confidence interval (CI) 1.66-7.63)] and ACE DD [vs DI/II, OR 4.41 (95% CI 1.80-10.8), P = 0.001] were independently associated with hypertension. CONCLUSIONS CD14 C-159T and ACE I/D contributed to hypertension in patients with IgAN.
Collapse
Affiliation(s)
- Maki Shinzawa
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, Dell'Oro R, Mancia G. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension 2011; 57:846-851. [PMID: 21300663 DOI: 10.1161/hypertensionaha.110.164780] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/11/2011] [Indexed: 12/14/2022]
Abstract
Direct and indirect indices of neuroadrenergic function have shown that end-stage renal disease is characterized by a marked sympathetic overdrive. It is unknown, however, whether this phenomenon represents a peculiar feature of end-stage renal disease or whether it is also detectable in the early clinical phases of the disease. The study has been performed in 73 hypertensive patients, of which there were 42 (age: 60.7±1.8 years, mean±SEM) with a stable moderate chronic renal failure (mean estimated glomerular filtration rate: 40.7 mL/min per 1.73 m2, MDRD formula) and 31 age-matched controls with a preserved renal function. Measurements included anthropometric variables, sphygmomanometric and beat-to-beat blood pressure, heart rate (ECG), venous plasma norepinephrine (high-performance liquid chromatography), and efferent postganglionic muscle sympathetic nerve activity (microneurography, peroneal nerve). For similar anthropometric and hemodynamic values, renal failure patients displayed muscle sympathetic nerve activity values significantly and markedly greater than controls (60.0±2.1 versus 45.7±2.0 bursts per 100 heartbeats; P<0.001). Muscle sympathetic nerve activity showed a progressive and significant increase from the first to the fourth quartile of the estimated glomerular filtration rate values (first: 41.0±2.7; second: 51.9±1.7; third: 59.8±3.0; fourth: 61.9±3.3 bursts per 100 heartbeats), the statistical significance (P<0.05) between groups being maintained after adjustment for confounders. In the population as a whole, muscle sympathetic nerve activity was significantly and inversely correlated with the estimated glomerular filtration rate (r=-0.59; P<0.0001). Thus, adrenergic activation is a phenomenon not confined to advanced renal failure but already detectable in the initial phases of the disease. The sympathetic overdrive parallels the severity of the renal failure, state and, thus, it might participate, in conjunction with other factors, at the disease progression.
Collapse
Affiliation(s)
- Guido Grassi
- Clinica Medica, Dipartimento di Medicina Clinica e Prevenzione, Università Milano-Bicocca, Ospedale San Gerardo, Via Pergolesi 33, 20052 Monza, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Schultz HD. Angiotensin and carotid body chemoreception in heart failure. Curr Opin Pharmacol 2011; 11:144-9. [PMID: 21242106 PMCID: PMC3075378 DOI: 10.1016/j.coph.2010.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
The carotid body (CB) plays an important role in the control of breathing and in autonomic control of cardiovascular function. CB chemoreceptor activity is enhanced in chronic heat failure (CHF) and contributes to the sympathetic hyperactivity that exacerbates the progression of the disease. Studies in the past few years have revealed that a local angiotensin (Ang) system exists in the CB and plays an important role in altering CB function in CHF as well as other conditions, such as chronic hypoxia. This brief review highlights recent revelations that Ang I metabolites exert effects within the CB, and focuses on the influence of Ang II and Ang-(1-7) on CB function in CHF.
Collapse
Affiliation(s)
- Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| |
Collapse
|