1
|
Micheli L, Di Cesare Mannelli L, Del Bello F, Giannella M, Piergentili A, Quaglia W, Carrino D, Pacini A, Ghelardini C. The Use of the Selective Imidazoline I 1 Receptor Agonist Carbophenyline as a Strategy for Neuropathic Pain Relief: Preclinical Evaluation in a Mouse Model of Oxaliplatin-Induced Neurotoxicity. Neurotherapeutics 2020; 17:1005-1015. [PMID: 32572830 PMCID: PMC7609613 DOI: 10.1007/s13311-020-00873-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Anti-cancer therapy based on the repeated administration of oxaliplatin is limited by the development of a disabling neuropathic syndrome with detrimental effects on the patient's quality of life. The lack of effective pharmacological approaches calls for the identification of innovative therapeutic strategies based on new targets. We focused our attention on the imidazoline I1 receptor (I1-R) and in particular on the selective I1-R agonist 2-(1-([1,1'-biphenyl]-2-yl)propan-2-yl)-4,5-dihydro-1H-imidazole) (carbophenyline). The purpose of this work was the preclinical evaluation of the efficacy of carbophenyline on oxaliplatin-induced neuropathic pain in mice. Carbophenyline, acutely per os administered (0.1-10 mg kg-1), induced a dose-dependent anti-hyperalgesic effect that was completely blocked by the pre-treatment with the I1-R antagonist 3 or the I1/α2 receptor antagonist efaroxan, confirming the I1-R-dependent mechanism. Conversely, pre-treatment with the I2-R antagonist BU224 did not block the anti-nociceptive effect evoked by carbophenyline. Repeated oral administrations of carbophenyline (1 mg kg-1) for 14 days, starting from the first day of oxaliplatin injection, counteracted the development of neuropathic pain in all behavioral tests (cold plate, Von Frey, and paw pressure tests) carried out 24 h after the last carbophenyline treatment on days 7 and 14. In the dorsal horn of the spinal cord, carbophenyline significantly decreased the oxaliplatin-induced astrocyte activation detected by immunofluorescence staining by the specific labelling with GFAP antibody. In conclusion, carbophenyline showed anti-neuropathic properties both after acute and chronic treatment with preventive effect against oxaliplatin-induced astrocyte activation in the spinal cord. Therefore, I1-R agonists emerge as a new class of candidates for the management of oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Laura Micheli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139, Florence, Italy.
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Mario Giannella
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Carla Ghelardini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
2
|
Nascimento AR, Gomes F, Machado MV, Gonçalves-de-Albuquerque C, Bousquet P, Tibiriçá E. I 1-imidazoline receptor-mediated cardiovascular and metabolic effects in high-fat diet-induced metabolic syndrome in rats. Auton Neurosci 2018; 217:18-25. [PMID: 30704971 DOI: 10.1016/j.autneu.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/09/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The objective of this study was to investigate the effects of a new I1-imidazoline receptor-selective pyrroline compound on the hemodynamic, metabolic and microvascular alterations in a high-fat diet (HFD)-induced model of metabolic syndrome in rats. METHODS In total, twenty adult male Wistar rats were fed a high-fat diet (HFD, n = 20) for 20 weeks. Thereafter, the rats received a new pyrroline compound selective for I1-imidazoline receptors (LNP599; 10 mg/kg/day) or vehicle (n = 10/group) orally by gavage for 4 weeks. Functional microcirculation was assessed using intravital video microscopy, and structural microcirculation was evaluated using histochemical analysis. RESULTS LNP599 induced concomitant reductions in the SBP, HR and plasma catecholamine levels. The animals treated with this new antihypertensive compound also presented an improvement in body weight and the metabolic parameters related to metabolic syndrome, such as the glucose and lipid profiles. These effects were accompanied by a reversal of the functional and structural capillary rarefaction in the skeletal muscle. CONCLUSIONS The modulation of the sympathetic nervous system by a selective agonist for I1-imidazoline receptors improves the hemodynamic and metabolic parameters in an experimental model of metabolic syndrome. LNP599 can also contribute to the restoration of microcirculatory parameters.
Collapse
Affiliation(s)
- Alessandro R Nascimento
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil; Faculty of Medicine of the University of Strasbourg, Strasbourg, France.
| | - Fabiana Gomes
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcus V Machado
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Pascal Bousquet
- Faculty of Medicine of the University of Strasbourg, Strasbourg, France
| | - Eduardo Tibiriçá
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Chiba T, Kondo N, Takahara A. Influences of rapid pacing-induced electrical remodeling on pharmacological manipulation of the atrial refractoriness in rabbits. J Pharmacol Sci 2016; 130:170-6. [DOI: 10.1016/j.jphs.2016.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/28/2016] [Accepted: 02/21/2016] [Indexed: 01/10/2023] Open
|
4
|
Gasparik V, Greney H, Schann S, Feldman J, Fellmann L, Ehrhardt JD, Bousquet P. Synthesis and Biological Evaluation of 2-Aryliminopyrrolidines as Selective Ligands for I1 Imidazoline Receptors: Discovery of New Sympatho-Inhibitory Hypotensive Agents with Potential Beneficial Effects in Metabolic Syndrome. J Med Chem 2014; 58:878-87. [DOI: 10.1021/jm501456p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vincent Gasparik
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Hugues Greney
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Stephan Schann
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Josiane Feldman
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Lyne Fellmann
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Jean-Daniel Ehrhardt
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| | - Pascal Bousquet
- Laboratoire
de Neurobiologie
et Pharmacologie Cardiovasculaire, Faculté de Médecine,
EA 7296, Fédération de Médecine Translationnelle, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France
| |
Collapse
|
5
|
|
6
|
Schann S, Greney H, Gasparik V, Dontenwill M, Rascente C, Lacroix G, Monassier L, Bruban V, Feldman J, Ehrhardt JD, Bousquet P. Methylation of imidazoline related compounds leads to loss of α2-adrenoceptor affinity. Synthesis and biological evaluation of selective I1 imidazoline receptor ligands. Bioorg Med Chem 2012; 20:4710-5. [DOI: 10.1016/j.bmc.2012.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/28/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
|
7
|
Ang R, Opel A, Tinker A. The Role of Inhibitory G Proteins and Regulators of G Protein Signaling in the in vivo Control of Heart Rate and Predisposition to Cardiac Arrhythmias. Front Physiol 2012; 3:96. [PMID: 22783193 PMCID: PMC3390690 DOI: 10.3389/fphys.2012.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/27/2012] [Indexed: 12/17/2022] Open
Abstract
Inhibitory heterotrimeric G proteins and the control of heart rate. The activation of cell signaling pathways involving inhibitory heterotrimeric G proteins acts to slow the heart rate via modulation of ion channels. A large number of Regulators of G protein signalings (RGSs) can act as GTPase accelerating proteins to inhibitory G proteins and thus it is important to understand the network of RGS\G-protein interaction. We will review our recent findings on in vivo heart rate control in mice with global genetic deletion of various inhibitory G protein alpha subunits. We will discuss potential central and peripheral contributions to the phenotype and the controversies in the literature.
Collapse
Affiliation(s)
- Richard Ang
- Centre for Clinical Pharmacology, Division of Medicine, University College LondonLondon, UK
| | - Aaisha Opel
- Centre for Clinical Pharmacology, Division of Medicine, University College LondonLondon, UK
| | - Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and DentistryLondon, UK
| |
Collapse
|
8
|
Abstract
BACKGROUND Perivascular adipose tissue secretes an adipocyte-derived relaxing factor (ADRF) that opens voltage-dependent K (Kv) channels in peripheral arteries. We studied the role of KCNQ-type Kv channels and tested the hypothesis that hydrogen sulfide (H2S) could be an ADRF. METHODS We performed isometric contraction studies on systemic arteries of rats and mice. RESULTS In mesenteric arteries and aortas without perivascular adipose tissue, the KCNQ channel openers retigabine, VRX0530727, VRX0621238, and VRX0621688 produced concentration-dependent vasorelaxation; VRX0621688 was the most potent vasodilator. The KCNQ inhibitor XE991 (30 micromol/l) blocked the effects of both the drugs and ADRF. Inhibitors of cystathionine gamma lyase (CSE) beta-cyano-L-alanine (BCA, 5 mmol/l) and 4-propargyl glycine (PPG, 10 mmol/l) also blocked the relaxations. CSE is expressed in perivascular adipose tissue and endogenously generates H2S. The H2S donor NaHS produced concentration-dependent vasorelaxation, which was also blocked by XE991. The vasodilatory capacities of retigabine, VRX0530727, VRX0621238, and VRX0621688 were preserved following inhibition of H2S generation in perivascular fat. CONCLUSION We suggest that KCNQ channel opening is a powerful mechanism to produce vasorelaxation of systemic arteries in rats and mice. Furthermore, KCNQ channels play a major role in the paracrine control of vascular tone by perivascular adipose tissue, which is at least in part mediated or modulated by H2S. In conditions of reduced H2S release from perivascular adipose tissue, these paracrine effects can be mimicked by synthetic KCNQ channel openers.
Collapse
|
9
|
Morecroft I, Murray A, Nilsen M, Gurney AM, MacLean MR. Treatment with the Kv7 potassium channel activator flupirtine is beneficial in two independent mouse models of pulmonary hypertension. Br J Pharmacol 2009; 157:1241-9. [PMID: 19508393 PMCID: PMC2743843 DOI: 10.1111/j.1476-5381.2009.00283.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/16/2009] [Accepted: 02/23/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Voltage-gated potassium (K(v)) channels contribute to resting membrane potential in pulmonary artery smooth muscle cells and are down regulated in patients with pulmonary arterial hypertension (PAH) and a contribution from K(v)7 channels has been recently proposed. We investigated the effect of the K(v)7 channel activator, flupirtine, on PAH in two independent mouse models: PAH induced by hypoxia and spontaneous PAH in mice over-expressing the 5-HT transporter (SERT(+) mice). EXPERIMENTAL APPROACH Right ventricular pressure was assessed in vivo in mice chronically treated with flupirtine (30 mg.kg(-1).day(-1)). In separate in vitro experiments, pulmonary arteries from untreated mice were mounted in a wire myograph. Relaxations to acute administration of flupirtine and contractions to K(v) channel blocking drugs, including the K(v)7 channel blocker linopirdine, were measured. KEY RESULTS In wild-type (WT) mice, hypoxia increased right ventricular pressure, pulmonary vascular remodelling and right ventricular hypertrophy. These effects were attenuated by flupirtine, which also attenuated these indices of PAH in SERT(+) mice. In the in vitro experiments, flupirtine induced a potent relaxant response in arteries from untreated WT and SERT(+) mice. The relaxation was fully reversed by linopirdine, which potently contracted mouse pulmonary arteries while other K(v) channel blockers did not. CONCLUSIONS AND IMPLICATIONS Flupirtine significantly attenuated development of chronic hypoxia-induced PAH in mice and reversed established PAH in SERT(+) mice, apparently via K(v)7 channel activation. These results provide the first direct evidence that drugs activating K(v)7 channels may be of benefit in the treatment of PAH with different aetiologies.
Collapse
MESH Headings
- Aminopyridines/therapeutic use
- Animals
- Disease Models, Animal
- Female
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- In Vitro Techniques
- Mice
- Muscle Contraction/drug effects
- Muscle Relaxation/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiopathology
- Potassium Channels, Voltage-Gated/agonists
- Potassium Channels, Voltage-Gated/antagonists & inhibitors
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiopathology
- Serotonin Plasma Membrane Transport Proteins/genetics
Collapse
Affiliation(s)
- I Morecroft
- Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|