1
|
Mendes-Junior LG, Freitas-Lima LC, Oliveira JR, Melo MB, Feltenberger JD, Brandi IV, Carvalho BMA, Guimarães ALS, De Paula AMB, D'Angelis CEM, Campagnole-Santos MJ, Souza Santos RA, Braga VA, Santos SHS. The usefulness of short-term high-fat/high salt diet as a model of metabolic syndrome in mice. Life Sci 2018; 209:341-348. [PMID: 30118771 DOI: 10.1016/j.lfs.2018.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 12/19/2022]
Abstract
Diabetic cardiomyopathy (DC) describes diabetes-associated changes in the structure and function of myocardium that are not directly linked to other factors such as hypertension. Currently there are some models of DC; however, they take a large time period to mimic key features. In the present study, we investigated the effects of a short-term high-fat/high salt diet (HFHS) treatment on myocardial function and structure, and vascular reactivity in C57BL/6 male mice. After 14 weeks HFHS induced hypertension (MAP = 144.95 ± 16.13 vs 92.90 ± 18.95 mm Hg), low glucose tolerance (AUC = 1049.01 ± 74.79 vs 710.50 ± 52.57 a.u.), decreased insulin sensitivity (AUC = 429.83 ± 35.22 vs 313.67 ± 19.55 a.u.) and increased adiposity (epididymal fat weight 0.96 ± 0.10 vs 0.59 ± 0.06 OW/BW × 102), aspects present in metabolic syndrome. Cardiac evaluation showed diastolic dysfunction (E/A ratio = 1.20 vs 1.90 u.a.) and cardiomyocyte hypertrophy (cardiomyocyte area = 502.82 ± 31.46 vs 385.58 ± 22.11 μm2). Lastly, vascular reactivity was impaired with higher contractile response (136.10 ± 3.49 vs 120.37 ± 5.43%) and lower response to endothelium-dependent vasorelaxation (74.01 ± 4.35 vs 104.84 ± 3.57%). In addition, the diet was able to induce an inward coronary remodeling (vascular total area: SCNS 6185 ± 800.6 vs HFHS 4085 ± 213.7 μm2). Therefore, we conclude that HFHS short-term treatment was able to induce metabolic syndrome-like state, cardiomyopathy and vascular injury working as an important tool to study cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Leandro Ceotto Freitas-Lima
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Janaína Ribeiro Oliveira
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Marcos B Melo
- Physiology Department, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Igor Viana Brandi
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Bruna Mara Aparecida Carvalho
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Lab. Health Science, PPGCS, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | | | | | | | | | - Valdir Andrade Braga
- Department of Biotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Sérgio Henrique Sousa Santos
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Lab. Health Science, PPGCS, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| |
Collapse
|
2
|
Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care 2014; 17:324-8. [PMID: 24848532 DOI: 10.1097/mco.0000000000000065] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Possible mechanisms in cellular senescence and the senescence-associated secretory phenotype (SASP) that drive and promote chronic inflammation in multiple age-related chronic diseases are considered. RECENT FINDINGS A series of studies about the SASP indicate that senescent cells may be involved in the development of chronic inflammatory diseases associated with aging. SUMMARY Aging is a complex biological process accompanied by a state of chronic, low-grade, 'sterile' inflammation, which is a major contributor to the development of many age-related chronic disorders including atherosclerosis, osteoarthritis, Alzheimer's disease, type 2 diabetes, cancers, and others. It appears that cellular senescence plays a role in causing inflammation through the SASP. A better understanding of the contribution of senescent cells to the pathologies of chronic inflammatory disorders could have potentially profound diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
3
|
Krug AW, Tille E, Sun B, Pojoga L, Williams J, Chamarthi B, Lichtman AH, Hopkins PN, Adler GK, Williams GH. Lysine-specific demethylase-1 modifies the age effect on blood pressure sensitivity to dietary salt intake. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1809-20. [PMID: 23054827 PMCID: PMC3776098 DOI: 10.1007/s11357-012-9480-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/17/2012] [Indexed: 05/08/2023]
Abstract
How interactions of an individual's genetic background and environmental factors, such as dietary salt intake, result in age-associated blood pressure elevation is largely unknown. Lysine-specific demethylase-1 (LSD1) is a histone demethylase that mediates epigenetic regulation and modification of gene transcription. We have shown previously that hypertensive African-American minor allele carriers of the LSD1 single nucleotide polymorphism (rs587168) display blood pressure salt sensitivity. Our goal was to further examine the effects of LSD1 genotype variants on interactions between dietary salt intake, age, and blood pressure. We found that LSD1 single nucleotide polymorphism (rs7548692) predisposes to increasing salt sensitivity during aging in normotensive Caucasian subjects. Using a LSD1 heterozygous knockout mouse model, we compared blood pressure values on low (0.02 % Na(+)) vs. high (1.6 % Na(+)) salt intake. Our results demonstrate significantly increased blood pressure salt sensitivity in LSD1-deficient compared to wild-type animals with age, confirming our findings of salt sensitivity in humans. Elevated blood pressure in LSD1(+/-) mice is associated with total plasma volume expansion and altered renal Na(+) excretion. In summary, our human and animal studies demonstrate that LSD1 is a genetic factor that interacts with dietary salt intake modifying age-associated blood pressure increases and salt sensitivity through alteration of renal Na(+) handling.
Collapse
Affiliation(s)
- Alexander W Krug
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bondarenko A, Panasiuk O, Stepanenko L, Goswami N, Sagach V. Reduced hyperpolarization of endothelial cells following high dietary Na+: effects of enalapril and tempol. Clin Exp Pharmacol Physiol 2012; 39:608-13. [PMID: 22540516 DOI: 10.1111/j.1440-1681.2012.05718.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. High dietary Na(+) is associated with impaired vascular endothelial function. However, the underlying mechanisms are not completely understood. In the present study, we investigated whether the endothelial hyperpolarization response to acetylcholine (ACh) exhibited any abnormalities in Wistar rats fed a high-salt diet (HSD) for 1 month and, if so, whether chronic treatment with the angiotensin-converting enzyme inhibitor enalapril or the anti-oxidant tempol could normalize the response. Membrane potential was recorded using the perforated patch-clamp technique on the endothelium of rat aorta. 2. Acetylcholine (2 μmol/L) produced a hyperpolarization sensitive to TRAM-34, a blocker of intermediate-conductance Ca(2+) -sensitive K(+) channels (IK(Ca)), but not to apamin, a blocker of small-conductance Ca(2+)-sensitive K(+) channels (SK(Ca)). NS309 (3 μmol/L), an activator of SK(Ca) and IK(Ca) channels, produced a hyperpolarization of similar magnitude as ACh. 3. In the HSD group, the ACh-evoked hyperpolarization was significantly attenuated compared with that in the control group, which was fed normal chow rather than an HSD. Similarly, the hyperpolarization produced by NS309 was weaker in tissues from HSD-fed rats. 4. Combination of HSD with chronic enalapril treatment (20 mg/kg per day for 1 month) normalized endothelial hyperpolarizing responses to ACh. Chronic tempol treatment (1 mmol/L in tap water for 1 month) prevented the reduced hyperpolarization to ACh. 5. The results of the present study indicate that excess in dietary Na(+) results in a failure of endothelial cells to generate normal IK(Ca) channel-mediated hyperpolarizing responses. Our observations implicate oxidative stress mediated by increased angiotensin II signalling as a mechanism underlying altered endothelial hyperpolarization during dietary salt loading.
Collapse
Affiliation(s)
- Alexander Bondarenko
- Circulatory Physiology Department, AA Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
5
|
Park S, Park JB, Lakatta EG. Association of central hemodynamics with estimated 24-h urinary sodium in patients with hypertension. J Hypertens 2011; 29:1502-7. [PMID: 21666493 PMCID: PMC4535170 DOI: 10.1097/hjh.0b013e3283486311] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE High salt intake is known to be the most pivotal environmental factor in the pathogenesis of hypertension. However, the association of high sodium intake with central hemodynamics in hypertensive individuals has not been well defined. Here, we determined the association of estimated 24-h urine sodium and potassium excretion estimated from a spot urine analysis with parameters of central pulse wave analysis in 515 hypertensive individuals. METHODS Fasting spot urine samples were obtained in the early morning after the first void, and estimated 24-h urine sodium and potassium excretion were estimated from measurement of urine sodium, potassium and creatinine. Central hemodynamics and arterial stiffness parameters were assessed via pulse wave analysis of the radial artery. RESULTS The estimated 24-h sodium and potassium excretion values were 150 ± 40 and 49 ± 10 mEq, respectively. There was a step-wise decrease in pulse pressure amplification with increasing estimated 24-h urine sodium excretion. Multiple linear regression analyses revealed that both estimated 24-h urine sodium excretion and sodium/potassium ratio were independently associated with increases in central pulse pressure, augmented aortic pressure and augmentation index and were inversely associated with pulse pressure amplification. CONCLUSION The estimated 24-h urinary sodium excretion is independently associated with central hemodynamics. This may provide the basis for prospective interventional studies of epidemiologic scale to determine the potential beneficial effects of reduced salt consumption on central hemodynamics.
Collapse
Affiliation(s)
- Sungha Park
- Division of Cardiology, Cardiovascular Center, Yonsei University College of Medicine
| | - Jeong Bae Park
- Division of Cardiology, Cheil General Hospital, Kwandong University College of Medicine, Seoul, Korea
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Aronow WS, Fleg JL, Pepine CJ, Artinian NT, Bakris G, Brown AS, Ferdinand KC, Ann Forciea M, Frishman WH, Jaigobin C, Kostis JB, Mancia G, Oparil S, Ortiz E, Reisin E, Rich MW, Schocken DD, Weber MA, Wesley DJ, Harrington RA, Bates ER, Bhatt DL, Bridges CR, Eisenberg MJ, Ferrari VA, Fisher JD, Gardner TJ, Gentile F, Gilson MF, Hlatky MA, Jacobs AK, Kaul S, Moliterno DJ, Mukherjee D, Rosenson RS, Stein JH, Weitz HH, Wesley DJ. ACCF/AHA 2011 expert consensus document on hypertension in the elderly: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents developed in collaboration with the American Academy of Neurology, American Geriatrics Society, American Society for Preventive Cardiology, American Society of Hypertension, American Society of Nephrology, Association of Black Cardiologists, and European Society of Hypertension. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2011; 5:259-352. [PMID: 21771565 DOI: 10.1016/j.jash.2011.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Aronow WS, Fleg JL, Pepine CJ, Artinian NT, Bakris G, Brown AS, Ferdinand KC, Forciea MA, Frishman WH, Jaigobin C, Kostis JB, Mancia G, Oparil S, Ortiz E, Reisin E, Rich MW, Schocken DD, Weber MA, Wesley DJ, Harrington RA. ACCF/AHA 2011 expert consensus document on hypertension in the elderly: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. Circulation 2011; 123:2434-2506. [PMID: 21518977 DOI: 10.1161/cir.0b013e31821daaf6] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Aronow WS, Fleg JL, Pepine CJ, Artinian NT, Bakris G, Brown AS, Ferdinand KC, Ann Forciea M, Frishman WH, Jaigobin C, Kostis JB, Mancia G, Oparil S, Ortiz E, Reisin E, Rich MW, Schocken DD, Weber MA, Wesley DJ. ACCF/AHA 2011 expert consensus document on hypertension in the elderly: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus documents developed in collaboration with the American Academy of Neurology, American Geriatrics Society, American Society for Preventive Cardiology, American Society of Hypertension, American Society of Nephrology, Association of Black Cardiologists, and European Society of Hypertension. J Am Coll Cardiol 2011; 57:2037-2114. [PMID: 21524875 DOI: 10.1016/j.jacc.2011.01.008] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Abstract
Arterial remodeling over time is a cornerstone of normal systemic aging. The age-associated arterial structural and functional changes in the intima, the media, and the adventitia are closely linked to angiotensin II (Ang II) signaling. A growing line of evidence indicates that essential elements of Ang II signaling, which encompasses milk fat globule epidermal growth factor-8, calpain-1, transforming growth factor-β1, matrix metalloproteinase-2/9, monocyte chemoattractant protein-1, nicotinamide adenine dinucleotide phosphate-oxidase, and reactive oxygen species, are upregulated within the central arterial wall in rats, nonhuman primates, and humans during aging. In vitro studies show that the elevation of Ang II signaling induces the accumulation of collagen and advanced glycated end-products, the degradation of elastin, and the increased cell cycle disorder, invasion, and hypertrophy of endothelial and vascular smooth muscle cells. Further, in vivo studies demonstrate that increased Ang II signaling accelerates arterial aging. Conversely, attenuating Ang II signaling via an inhibition of angiotensin conversing enzyme or a blockade of AT1 activation retards age-associated arterial remodeling. This review attempts to integrate complex facts of Ang II signaling within the aged central arterial wall and may shed light on new therapeutic targets for arterial aging.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Age-associated arterial alterations in cells, matrix, and biomolecules are the foundation for the initiation and progression of cardiovascular diseases in older persons. This review focuses on the latest advances on the intertwining of aging and disease within the arterial wall at the cell and molecular levels. RECENT FINDINGS Endothelial dysfunction, vascular smooth muscle cell (VSMC) proliferation/invasion/secretion, matrix fragmentation, collagenization and glycation are characteristics of an age-associated arterial phenotype that creates a microenvironment enriched with reactive oxygen species (ROS) for the pathogenesis of arterial disease. This niche creates an age-associated arterial secretory phenotype (AAASP), which is orchestrated by the concerted effects of numerous age-modified angiotensin II signaling molecules. Most of these biomolecular, cell, and matrix modifications that constitute the AAASP can be elicited by experimental hypertension or atherosclerosis at a younger age. The arterial AAASP also shares features of a senescence-associated secretory phenotype (SASP) identified in other mesenchymocytes, that is, fibroblasts. SUMMARY A subclinical AAASP evolves during aging. Targeting this subclinical AAASP may reduce the incidence and progression of the quintessential age-associated arterial diseases, that is, hypertension and atherosclerosis.
Collapse
|
11
|
Lakatta EG, Wang M, Najjar SS. Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med Clin North Am 2009; 93:583-604, Table of Contents. [PMID: 19427493 PMCID: PMC2943242 DOI: 10.1016/j.mcna.2009.02.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The structure and function of arteries change throughout a lifetime. Age is the dominant risk factor for hypertension, coronary heart disease, congestive heart failure, and stroke. The cellular/molecular proinflammatory alterations that underlie arterial aging are novel putative candidates to be targeted by interventions aimed at attenuating arterial aging as a major risk factor for cardiovascular diseases. This review provides a landscape of central arterial aging and age-disease interactions, integrating perspectives that range from humans to molecules, with the goal that future therapies for cardiovascular diseases, such as hypertension, also will target the prevention or amelioration of unsuccessful arterial aging.
Collapse
Affiliation(s)
- Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|