1
|
Zhuo JC, Cai DK, Xie KF, Gan HN, Li SS, Huang XJ, Huang D, Zhang CZ, Li RY, Chen YX, Zeng XH. Mechanism of YLTZ on glycolipid metabolism based on UPLC/TOF/MS metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1097-1098:128-141. [PMID: 30241074 DOI: 10.1016/j.jchromb.2018.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by dysfunction of glycolipid metabolism. YLTZ is used to treat hyperlipidemia, yet its hypolipidemic and hypoglycemic mechanism on T2DM are unknown. Thus, UPLC/TOF/MS was applied in this study to identify the potential bio-markers, and deduce the possible metabolic pathways. According to bio-indexes, the increased blood lipid levels, including TC, TG, LDL and FA, and the decreased HDL, the elevated glucose, reduced insulin level and impaired OGTT were observed in diabetic rat model. While YLTZ can decrease the lipid levels and glucose content, as well as increased insulin standards and improve OGTT. After data from UPLC/TOF/MS processed, 17 metabolites were obtained, including phospholipids (LPCs, PCs and PGP (18:1)), beta-oxidation production (HAA, VAG and CNE) and precursors (THA), bile acid (CA, CDCA and IDCA), hydrolysate of TG (MG (22:4)), glycometabolism (G6P), cholesterol-driven synthetics (ADO) and production of arachidonate acid (THETA). As a result, YLTZ was able to reduce LPCs, PCs, PGP (18:1), HAA, VAG, CNE, CA, ADO and THETA, as well as enhance MG (22:4) and G6P. After analyzing results, several metabolic pathways were deduced, which containing, cholesterol synthesis and elimination, FA beta-oxidation, TG hydrolysis, phospholipids synthesis, glycolysis, gluconeogenesis and inflammation. Consequently, YLTZ performed to prohibit the FA beta-oxidation, synthesis of cholesterol and phospholipids, gluconeogenesis and inflammation level, as well as promote TG hydrolysis, glycolysis and blood circulation. Hence, applying metabonomics in TCM research can uncover its pharmacological edges, elucidating comprehensively that YLTZ has capacity of hypolipidemic, hypoglycemic and promoting blood circulation, matching the effect of removing blood stasis, eliminating phlegm and dampness.
Collapse
Affiliation(s)
- Jun-Cheng Zhuo
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Da-Ke Cai
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Kai-Feng Xie
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Hai-Ning Gan
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Sha-Sha Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xue-Jun Huang
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Dane Huang
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Cheng-Zhe Zhang
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Ru-Yue Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Yu-Xing Chen
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China.
| | - Xiao-Hui Zeng
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China.
| |
Collapse
|
5
|
Galmiche G, Pizard A, Gueret A, El Moghrabi S, Ouvrard-Pascaud A, Berger S, Challande P, Jaffe IZ, Labat C, Lacolley P, Jaisser F. Smooth muscle cell mineralocorticoid receptors are mandatory for aldosterone-salt to induce vascular stiffness. Hypertension 2014; 63:520-526. [PMID: 24296280 PMCID: PMC4446717 DOI: 10.1161/hypertensionaha.113.01967] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/28/2013] [Indexed: 01/12/2023]
Abstract
Arterial stiffness is recognized as a risk factor for many cardiovascular diseases. Aldosterone via its binding to and activation of the mineralocorticoid receptors (MRs) is a main regulator of blood pressure by controlling renal sodium reabsorption. Although both clinical and experimental data indicate that MR activation by aldosterone is involved in arterial stiffening, the molecular mechanism is not known. In addition to the kidney, MR is expressed in both endothelial and vascular smooth muscle cells (VSMCs), but the specific contribution of the VSMC MR to aldosterone-induced vascular stiffness remains to be explored. To address this question, we generated a mouse model with conditional inactivation of the MR in VSMC (MR(SMKO)). MR(SMKO) mice show no alteration in renal sodium handling or vascular structure, but they have decreased blood pressure when compared with control littermate mice. In vivo at baseline, large vessels of mutant mice presented with normal elastic properties, whereas carotids displayed a smaller diameter when compared with those of the control group. As expected after aldosterone/salt challenge, the arterial stiffness increased in control mice; however, it remained unchanged in MR(SMKO) mice, without significant modification in vascular collagen/elastin ratio. Instead, we found that the fibronectin/α5-subunit integrin ratio is profoundly altered in MR(SMKO) mice because the induction of α5 expression by aldosterone/salt challenge is prevented in mice lacking VSMC MR. Altogether, our data reveal in the aldosterone/salt hypertension model that MR activation specifically in VSMC leads to the arterial stiffening by modulation of cell-matrix attachment proteins independent of major vascular structural changes.
Collapse
MESH Headings
- Aldosterone/toxicity
- Animals
- Blood Pressure/drug effects
- Disease Models, Animal
- Hypertension/chemically induced
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Receptors, Mineralocorticoid/metabolism
- Signal Transduction
- Sodium Chloride, Dietary/toxicity
- Vascular Stiffness/drug effects
Collapse
Affiliation(s)
- Guillaume Galmiche
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| | - Anne Pizard
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| | - Alexandre Gueret
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| | - Soumaya El Moghrabi
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| | - Antoine Ouvrard-Pascaud
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| | - Stefan Berger
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| | - Pascal Challande
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| | - Iris Z Jaffe
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| | - Carlos Labat
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| | - Patrick Lacolley
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Université Pierre et Marie, Inserm U872 Équipe 1, Paris, France (G.G., S.E.M., F.J.); Inserm U1116, Université de Lorraine, Vandoeuvre-lès-Nancy, France (A.P., C.L., P.L.); Inserm U1096, Rouen, France (A.G., A.O.-P.); German Cancer Research Center, Heidelberg, Germany (S.B.); Université Pierre et Marie Curie, Paris 06, France (P.C.); CNRS, UMR 7190, Paris, France (P.C.); Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.); and Centre for Clinical Investigation, Inserm U9501, CHU Brabois, Vandoeuvre-lès-Nancy, France (A.P., F.J.)
| |
Collapse
|
6
|
Yang EY, Brunner G, Dokainish H, Hartley CJ, Taffet G, Lakkis N, Taylor AA, Misra A, McCulloch ML, Morrisett J, Virani SS, Ballantyne CM, Nagueh SF, Nambi V. Application of speckle-tracking in the evaluation of carotid artery function in subjects with hypertension and diabetes. J Am Soc Echocardiogr 2013; 26:901-909.e1. [PMID: 23759168 PMCID: PMC3725197 DOI: 10.1016/j.echo.2013.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Indexed: 10/26/2022]
Abstract
BACKGROUND Speckle-tracking enables direct tracking of carotid arterial wall motion. Timing intervals determined with carotid speckle-tracking and slopes calculated from carotid artery area versus cardiac cycle curves may provide further information on arterial function and stiffness. The proposed arterial stiffness parameters were examined in healthy controls (n = 20), nondiabetic patients with hypertension (n = 20), and patients with type 2 diabetes (n = 21). METHODS Bilateral electrocardiographically gated ultrasonograms of the distal common carotid artery were acquired using a 12-MHz vascular probe. Four timing intervals were derived from speckle-tracked carotid arterial strain curves: (1) carotid predistension period, (2) peak carotid arterial strain time, (3) arterial distension period, and (4) arterial diastolic time. In addition, carotid artery area curves were recorded over the cardiac cycle and subdivided into four segments, S1 to S4, relating to arterial distention and contraction periods. RESULTS Mean far wall predistension period and peak carotid arterial strain time were more delayed in patients with diabetes and hypertension than in controls. Global mean arterial distension period was prolonged and arterial diastolic time was shorter in patients with hypertension and diabetes than in controls. Slopes of segments S2 and S4 were markedly steeper in the combined group of patients with hypertension and diabetes compared with healthy controls (P = .03 and P = .02, respectively). CONCLUSIONS Speckle-tracking-based measures of arterial stiffness may provide potential additive value in assessing vascular function in patients at risk for cardiovascular disease.
Collapse
Affiliation(s)
- Eric Y. Yang
- Department of Medicine, Baylor College of Medicine – Houston, TX
- The Methodist DeBakey Heart and Vascular Center, the Methodist Hospital – Houston, TX
| | - Gerd Brunner
- Department of Medicine, Baylor College of Medicine – Houston, TX
- The Methodist DeBakey Heart and Vascular Center, the Methodist Hospital – Houston, TX
| | | | - Craig J. Hartley
- Department of Medicine, Baylor College of Medicine – Houston, TX
| | - George Taffet
- Department of Medicine, Baylor College of Medicine – Houston, TX
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Nasser Lakkis
- Department of Medicine, Baylor College of Medicine – Houston, TX
- Ben Taub General Hospital, Houston TX
| | - Addison A. Taylor
- Department of Medicine, Baylor College of Medicine – Houston, TX
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Arunima Misra
- Department of Medicine, Baylor College of Medicine – Houston, TX
- Ben Taub General Hospital, Houston TX
| | - Marti L. McCulloch
- The Methodist DeBakey Heart and Vascular Center, the Methodist Hospital – Houston, TX
| | - Joel Morrisett
- Department of Medicine, Baylor College of Medicine – Houston, TX
| | - Salim S. Virani
- Department of Medicine, Baylor College of Medicine – Houston, TX
- The Methodist DeBakey Heart and Vascular Center, the Methodist Hospital – Houston, TX
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Christie M. Ballantyne
- Department of Medicine, Baylor College of Medicine – Houston, TX
- The Methodist DeBakey Heart and Vascular Center, the Methodist Hospital – Houston, TX
| | - Sherif F. Nagueh
- The Methodist DeBakey Heart and Vascular Center, the Methodist Hospital – Houston, TX
| | - Vijay Nambi
- Department of Medicine, Baylor College of Medicine – Houston, TX
- The Methodist DeBakey Heart and Vascular Center, the Methodist Hospital – Houston, TX
- Ben Taub General Hospital, Houston TX
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| |
Collapse
|