1
|
Singh MK, Lakshman MK. Recent developments in the utility of saturated azaheterocycles in peptidomimetics. Org Biomol Chem 2022; 20:963-979. [PMID: 35018952 DOI: 10.1039/d1ob01329g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To a large extent, the physical and chemical properties of peptidomimetic molecules are dictated by the integrated heterocyclic scaffolds they contain. Heterocyclic moieties are introduced into a majority of peptide-mimicking molecules to modulate conformational flexibility, improve bioavailability, and fine-tune electronics, and in order to achieve potency similar to or better than that of the natural peptide ligand. This mini-review delineates recent developments, limited to the past five years, in the utility of selected saturated 3- to 6-membered heterocyclic moieties in peptidomimetic design. Also discussed is the chemistry involved in the synthesis of the azaheterocyclic scaffolds and the structural implications of the introduction of these azaheterocycles in peptide backbones as well as side chains of the peptide mimics.
Collapse
Affiliation(s)
- Manish K Singh
- Department of Science, Technology, and Mathematics, Lincoln University, 820 Chestnut Street, Jefferson City, Missouri 65101, USA.
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
2
|
De Moudt S, Leloup A, Fransen P. Aortic Stiffness Hysteresis in Isolated Mouse Aortic Segments Is Intensified by Contractile Stimuli, Attenuated by Age, and Reversed by Elastin Degradation. Front Physiol 2021; 12:723972. [PMID: 34650441 PMCID: PMC8507434 DOI: 10.3389/fphys.2021.723972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Cyclic stretch of vascular tissue at any given pressure reveals greater dimensions during unloading than during loading, which determines the cardiac beat-by-beat hysteresis loop on the pressure-diameter/volume relationship. The present study did not focus on hysteresis during a single stretch cycle but investigated whether aortic stiffness determined during continuous stretch at different pressures also displayed hysteresis phenomena. Methods: Aortic segments from C57Bl6 mice were mounted in the Rodent Oscillatory Set-up for Arterial Compliance (ROTSAC), where they were subjected to high frequency (10 Hz) cyclic stretch at alternating loads equivalent to a constant theoretical pulse pressure of 40 mm Hg. Diastolic and systolic diameter, compliance, and the Peterson elastic modulus (Ep), as a measure of aortic stiffness, was determined starting at cyclic stretch between alternating loads corresponding to 40 and 80 mm Hg, at each gradual load increase equivalent to 20 mm Hg, up to loads equivalent to pressures of 220 and 260 mm Hg (loading direction) and then repeated in the downward direction (unloading direction). This was performed in baseline conditions and following contraction by α1 adrenergic stimulation with phenylephrine or by depolarization with high extracellular K+ in aortas of young (5 months), aged (26 months) mice, and in segments treated with elastase. Results: In baseline conditions, diastolic/systolic diameters and compliance for a pulse pressure of 40 mm Hg were larger at any given pressure upon unloading (decreasing pressure) than loading (increasing pressure) of the aortic segments. The pressure-aortic stiffness (Ep) relationship was similar in the loading and unloading directions, and aortic hysteresis was absent. On the other hand, hysteresis was evident after activation of the VSMCs with the α1 adrenergic agonist phenylephrine and with depolarization by high extracellular K+, especially after inhibition of basal NO release with L-NAME. Aortic stiffness was significantly smaller in the unloading than in the loading direction. In comparison with young mice, old-mouse aortic segments also displayed contraction-dependent aortic hysteresis, but hysteresis was shifted to a lower pressure range. Elastase-treated segments showed higher stiffness upon unloading over nearly the whole pressure range. Conclusions: Mouse aortic segments display pressure- and contraction-dependent diameter, compliance, and stiffness hysteresis phenomena, which are modulated by age and VSMC-extracellular matrix interactions. This may have implications for aortic biomechanics in pathophysiological conditions and aging.
Collapse
Affiliation(s)
- Sofie De Moudt
- Physiopharmacology, Department Pharmaceutical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Arthur Leloup
- Physiopharmacology, Department Pharmaceutical Sciences, University of Antwerp, Antwerpen, Belgium
| | - Paul Fransen
- Physiopharmacology, Department Pharmaceutical Sciences, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
3
|
Ueda K, Janiczek DM, Casey DP. Arterial Stiffness Predicts General Anesthesia-Induced Vasopressor-Resistant Hypotension in Patients Taking Angiotensin-Converting Enzyme Inhibitors. J Cardiothorac Vasc Anesth 2021; 35:73-80. [PMID: 32921603 PMCID: PMC8528715 DOI: 10.1053/j.jvca.2020.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Patients chronically treated with angiotensin-converting enzyme inhibitors (ACEIs) may develop hypotension after induction of general anesthesia. A fraction of these patients are resistant to therapeutic doses of vasopressors, which poses serious concerns for hemodynamic management. The authors hypothesized that the patients who develop refractory hypotension, compared with those who do not, show lower central arterial stiffness due to the profound effect of ACEIs. DESIGN Prospective observational study. SETTING Single tertiary center. INTERVENTIONS Fifty surgical patients chronically treated with ACEIs were enrolled. Prior to surgery, all the patients had central arterial stiffness assessment measured by carotid-femoral pulse-wave velocity. Patients were categorized into 2 groups according to the systolic blood pressure response during the first 10 minutes after induction of general anesthesia: a vasopressor-resistant hypotension group requiring more than 200 µg phenylephrine, or a control group requiring no more than 200 µg of phenylephrine to maintain systolic blood pressure above 90 mmHg during the study period. MEASUREMENTS AND MAIN RESULTS Carotid-femoral pulse-wave velocity was significantly lower in the vasopressor-resistant hypotension group compared to the control group (7.6 [7.2-8.3] m/s v 9.9 [8.7-12.0] m/s, p = 0.001 [Hodges-Lehman median difference 2.2, 95% confidence interval = 1.1-4.4]). CONCLUSION These findings suggested that preoperative measurement of carotid-femoral pulse-wave velocity in patients chronically treated with ACEIs could help identify patients at increased risk of developing hypotension refractory to vasopressors after induction of general anesthesia.
Collapse
Affiliation(s)
- Kenichi Ueda
- Department of Anesthesia, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA; Department of Anesthesia, Kameda General Hospital, Chiba, Japan.
| | - David M Janiczek
- Department of Anesthesiology, University of Illinois-Chicago, Chicago, IL
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| |
Collapse
|
4
|
Butlin M, Tan I, Spronck B, Avolio AP. Measuring Arterial Stiffness in Animal Experimental Studies. Arterioscler Thromb Vasc Biol 2020; 40:1068-1077. [PMID: 32268787 PMCID: PMC7176337 DOI: 10.1161/atvbaha.119.313861] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The arterial wall is a composite material of elastin, collagen, and extracellular matrix with acutely modifiable material properties through the action of smooth muscle cells. Therefore, arterial stiffness is a complex parameter that changes not only with long-term remodeling of the wall constituents but also with acute contraction or relaxation of smooth muscle or with changes in the acute distending pressure to which the artery is exposed. It is not possible to test all these aspects using noninvasive or even invasive techniques in humans. Full characterization of the mechanical properties of the artery and the specific arterial factors causing changes to stiffness with disease or modified lifestyle currently require animal studies. This article summarizes the major in vivo and ex vivo techniques to measure the different aspects of arterial stiffness in animal studies.
Collapse
Affiliation(s)
- Mark Butlin
- From the Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia (M.B., I.T., A.P.A.)
| | - Isabella Tan
- From the Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia (M.B., I.T., A.P.A.)
| | - Bart Spronck
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT (B.S.).,Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands (B.S.)
| | - Alberto P Avolio
- From the Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia (M.B., I.T., A.P.A.)
| |
Collapse
|
5
|
Pharmacological and Nutritional Modulation of Vascular Calcification. Nutrients 2019; 12:nu12010100. [PMID: 31905884 PMCID: PMC7019601 DOI: 10.3390/nu12010100] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is an independent predictor of cardiovascular disease, and therefore, inhibition or regression of this processes is of clinical importance. The standard care regarding prevention and treatment of cardiovascular disease at this moment mainly depends on drug therapy. In animal and preclinical studies, various forms of cardiovascular drug therapy seem to have a positive effect on vascular calcification. In particular, calcium channel blockers and inhibitors of the renin-angiotensin-aldosteron system slowed down arterial calcification in experimental animals. In humans, the results of trials with these drugs are far less pronounced and often contradictory. There is limited evidence that the development of new atherosclerotic lesions may be retarded in patients with coronary artery disease, but existing lesions can hardly be influenced. Although statin therapy has a proven role in the prevention and treatment of cardiovascular morbidity and mortality, it is associated with both regression and acceleration of the vascular calcification process. Recently, nutritional supplements have been recognized as a potential tool to reduce calcification. This is particularly true for vitamin K, which acts as an inhibitor of vascular calcification. In addition to vitamin K, other dietary supplements may also modulate vascular function. In this narrative review, we discuss the current state of knowledge regarding the pharmacological and nutritional possibilities to prevent the development and progression of vascular calcification.
Collapse
|
6
|
Abstract
Natural and nonnatural amino acids represent important building blocks for the development of peptidomimetic scaffolds, especially for targeting proteolytic enzymes and for addressing protein–protein interactions. Among all the different amino acids derivatives, proline is particularly relevant in chemical biology and medicinal chemistry due to its secondary structure’s inducing and stabilizing properties. Also, the pyrrolidine ring is a conformationally constrained template that can direct appendages into specific clefts of the enzyme binding site. Thus, many papers have appeared in the literature focusing on the use of proline and its derivatives as scaffolds for medicinal chemistry applications. In this review paper, an insight into the different biological outcomes of d-proline and l-proline in enzyme inhibitors is presented, especially when associated with matrix metalloprotease and metallo-β-lactamase enzymes.
Collapse
|
7
|
Butlin M, Shirbani F, Barin E, Tan I, Spronck B, Avolio AP. Cuffless Estimation of Blood Pressure: Importance of Variability in Blood Pressure Dependence of Arterial Stiffness Across Individuals and Measurement Sites. IEEE Trans Biomed Eng 2018; 65:2377-2383. [DOI: 10.1109/tbme.2018.2823333] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Butlin M, Hathway PJ, Kouchaki Z, Peebles K, Avolio AP. A simplified method for quantifying the subject-specific relationship between blood pressure and carotid-femoral pulse wave velocity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:5708-11. [PMID: 26737588 DOI: 10.1109/embc.2015.7319688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Devices that estimate blood pressure from arterial pulse wave velocity (PWV) potentially provide continuous, ambulatory blood pressure monitoring. Accurate blood pressure estimation requires reliable quantification of the relationship between blood pressure and PWV. Regression to population normal values or, when using limb artery PWV, changing hydrostatic blood pressure within the limb provides a calibration index. Population lookup tables require accurate anthropometric correlates, assuming no individual variation. Only devices that measure PWV in the limb can use limb position changes. This study proposes a method for developing a calibration curve independent of lookup tables and useful for large artery PWV measurement, such as carotid-femoral PWV (PWVcf). PWVcf was measured in 27 normal subjects (15 female, 36±19 years) in both the supine and standing position. The change in systemic pressure was measured and hydrostatic pressure change calculated from estimated vessel path length height, measured using body surface distances. Brachial diastolic blood pressure increased for all subjects from supine to standing (supine 70±8 mmHg, standing 83±8 mmHg, p<;0.001) with an additional hydrostatic change across the carotid-femoral path length of 19±2 mmHg (p<;0.001). PWVcf also increased in all subjects (supine 5.2±1.3 m/s, standing 7.3±2.2 m/s, p<;0.001). The subject-specific calibration index (ΔDP/ΔPWVcf) varied amongst the cohort (20±8 mmHg/m/s), was correlated with age (-0.57, p=0.002) and seated aortic systolic pressure (-0.38, p=0.048) and was always greater than zero. Thus, this study describes a simple but novel method of measuring an individualized calibration index using blood pressure and PWV measurements in the supine and standing position.
Collapse
|
9
|
Soler A, Hunter I, Joseph G, Hutcheson R, Hutcheson B, Yang J, Zhang FF, Joshi SR, Bradford C, Gotlinger KH, Maniyar R, Falck JR, Proctor S, Schwartzman ML, Gupte SA, Rocic P. Elevated 20-HETE in metabolic syndrome regulates arterial stiffness and systolic hypertension via MMP12 activation. J Mol Cell Cardiol 2018; 117:88-99. [PMID: 29428638 PMCID: PMC5877315 DOI: 10.1016/j.yjmcc.2018.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/08/2018] [Accepted: 02/07/2018] [Indexed: 11/24/2022]
Abstract
Arterial stiffness plays a causal role in development of systolic hypertension. 20-hydroxyeicosatetraeonic acid (20-HETE), a cytochrome P450 (CYP450)-derived arachidonic acid metabolite, is known to be elevated in resistance arteries in hypertensive animal models and loosely associated with obesity in humans. However, the role of 20-HETE in the regulation of large artery remodeling in metabolic syndrome has not been investigated. We hypothesized that elevated 20-HETE in metabolic syndrome increases matrix metalloproteinase 12 (MMP12) activation leading to increased degradation of elastin, increased large artery stiffness and increased systolic blood pressure. 20-HETE production was increased ~7 fold in large, conduit arteries of metabolic syndrome (JCR:LA-cp, JCR) vs. normal Sprague-Dawley (SD) rats. This correlated with increased elastin degradation (~7 fold) and decreased arterial compliance (~75% JCR vs. SD). 20-HETE antagonists blocked elastin degradation in JCR rats concomitant with blocking MMP12 activation. 20-HETE antagonists normalized, and MMP12 inhibition (pharmacological and MMP12-shRNA-Lnv) significantly improved (~50% vs. untreated JCR) large artery compliance in JCR rats. 20-HETE antagonists also decreased systolic (182 ± 3 mmHg JCR, 145 ± 3 mmHg JCR + 20-HETE antagonists) but not diastolic blood pressure in JCR rats. Whereas diastolic pressure was fully angiotensin II (Ang II)-dependent, systolic pressure was only partially Ang II-dependent, and large artery stiffness was Ang II-independent. Thus, 20-HETE-dependent regulation of systolic blood pressure may be a unique feature of metabolic syndrome related to high 20-HETE production in large, conduit arteries, which results in increased large artery stiffness and systolic blood pressure. These findings may have implications for management of systolic hypertension in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Amanda Soler
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Ian Hunter
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Gregory Joseph
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Rebecca Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Brenda Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Jenny Yang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Frank Fan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Sachindra Raj Joshi
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Chastity Bradford
- Department of Biology, Tuskegee University, Tuskegee, AL 36088, United States
| | - Katherine H Gotlinger
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Rachana Maniyar
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - John R Falck
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Spencer Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
10
|
Chen Z, Yu H, Shi Y, Zhu M, Wang Y, Hu X, Zhang Y, Chang Y, Xu M, Gao W. Vascular Remodelling Relates to an Elevated Oscillatory Shear Index and Relative Residence Time in Spontaneously Hypertensive Rats. Sci Rep 2017; 7:2007. [PMID: 28515420 PMCID: PMC5435712 DOI: 10.1038/s41598-017-01906-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/03/2017] [Indexed: 01/25/2023] Open
Abstract
Haemodynamic disorders are common clinical findings in hypertension and lead to adverse cardiovascular events. However, the haemodynamic conditions in hypertension models are poorly understood. This study aimed to observe the characteristics of haemodynamics in spontaneously hypertensive rats (SHRs) and antihypertensive-treated SHRs. Twenty-four adult male SHRs and Wistar-Kyoto rats (WKYs) were randomly divided into four groups and treated for 7 days as follows: WKY-CON (WKYs + saline), WKY-NIF (WKYs + nifedipine, 50 mg/kg/day), SHR-CON (SHRs + saline), and SHR-NIF (SHRs + nifedipine). Aortic computational fluid dynamics (CFD) models were simulated to obtain the haemodynamic parameters. We found that in the hypertensive (SHR-CON) and blood pressure-controlled (SHR-NIF) groups, the oscillatory shear index (OSI) and relative residence time (RRT), which are key haemodynamics indices, were markedly elevated. Furthermore, there was a correlation between both the elevated OSI and RRT with the vascular wall thickening in regions near the inner wall of the aortic arch. Our research demonstrates that haemodynamics remains disturbed even if the blood pressure is normalized. In addition, vascular remodelling may play an important role in maintaining elevated OSI and RRT values.
Collapse
Affiliation(s)
- Zhiyan Chen
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Haiyi Yu
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yue Shi
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Minjia Zhu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Yueshen Wang
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Xi Hu
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yu Chang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.
| | - Ming Xu
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| | - Wei Gao
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
11
|
Abstract
Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling.
Collapse
Affiliation(s)
- Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| | - L Bortolotto
- Heart Institute-Hypertension Unit, Medical School University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Liang Y, Wang J, Gao H, Wang Q, Zhang J, Qiu J. Beneficial effects of grape seed proanthocyanidin extract on arterial remodeling in spontaneously hypertensive rats via protecting against oxidative stress. Mol Med Rep 2016; 14:3711-8. [PMID: 27601315 DOI: 10.3892/mmr.2016.5699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/01/2016] [Indexed: 11/05/2022] Open
Abstract
Arterial remodeling is a pathogenic occurrence during hypertension and, in turn, is closely associated with the development and complications of hypertension. Grape seed proanthocyanidin extract (GSPE) has been reported to exhibit a protective effect on cardiovascular disease, however its effect on arterial remodeling remains to be fully elucidated. In the present study, the effects of GSPE on arterial remodeling were analyzed by treating spontaneously hypertensive rats (SHRs) with GSPE (250 mg/kg·day). Arterial remodeling was quantified through morphological methods; thoracic aortas were stained with hematoxylin-eosin or sirius red‑victoria blue. The arterial ultrastructure was imaged using transmission electron microscopy. The content of nitric oxide (NO) and endothelin‑1 (ET‑1) were examined to determine endothelial function. Oxidative stress was assessed by malondialdehyde (MDA) levels and the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Administration of GSPE markedly alleviated hypertension‑induced arterial remodeling, which was not associated with blood pressure control. ET‑1 production was reduced, while NO production was increased in the GSPE group, which exhibited improved endothelial function. In addition, treatment with GSPE significantly ameliorated oxidative stress by improving SOD and CAT activities and reducing MDA formation. In conclusion, GSPE may attenuate hypertension‑induced arterial remodeling by repressing oxidative stress and is recommended as a potential anti‑arterial remodeling agent for patients with hypertensive vascular diseases.
Collapse
Affiliation(s)
- Ying Liang
- Department of Geriatric Cardiology, Qianfoshan Hospital of Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jian Wang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiqing Gao
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Quanzhen Wang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jun Zhang
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Qiu
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
13
|
Zhang J, Zhao X, Vatner DE, McNulty T, Bishop S, Sun Z, Shen YT, Chen L, Meininger GA, Vatner SF. Extracellular Matrix Disarray as a Mechanism for Greater Abdominal Versus Thoracic Aortic Stiffness With Aging in Primates. Arterioscler Thromb Vasc Biol 2016; 36:700-6. [PMID: 26891739 DOI: 10.1161/atvbaha.115.306563] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/08/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Increased vascular stiffness is central to the pathophysiology of aging, hypertension, diabetes mellitus, and atherosclerosis. However, relatively few studies have examined vascular stiffness in both the thoracic and the abdominal aorta with aging, despite major differences in anatomy, embryological origin, and relation to aortic aneurysm. APPROACH AND RESULTS The 2 other unique features of this study were (1) to study young (9±1 years) and old (26±1 years) male monkeys and (2) to study direct and continuous measurements of aortic pressure and thoracic and abdominal aortic diameters in conscious monkeys. As expected, aortic stiffness, β, was increased P<0.05, 2- to 3-fold, in old versus young thoracic aorta and augmented further with superimposition of acute hypertension with phenylephrine. Surprisingly, stiffness was not greater in old thoracic aorta than in young abdominal aorta. These results can be explained, in part, by the collagen/elastin ratio, but more importantly, by disarray of collagen and elastin, which correlated best with vascular stiffness. However, vascular smooth muscle cell stiffness was not different in thoracic versus abdominal aorta in either young or old monkeys. CONCLUSIONS Thus, aortic stiffness increases with aging as expected, but the most severe increases in aortic stiffness observed in the abdominal aorta is novel, where values in young monkeys equaled, or even exceeded, values of thoracic aortic stiffness in old monkeys. These results can be explained by alterations in collagen/elastin ratio, but even more importantly by collagen and elastin disarray.
Collapse
Affiliation(s)
- Jie Zhang
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Cardiovascular Research Institute, Newark (J.Z., X.Z., D.E.V., T.M.N., S.B., Y.-T.S., L.C., S.F.V.); and Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., G.A.M.)
| | - Xin Zhao
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Cardiovascular Research Institute, Newark (J.Z., X.Z., D.E.V., T.M.N., S.B., Y.-T.S., L.C., S.F.V.); and Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., G.A.M.)
| | - Dorothy E Vatner
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Cardiovascular Research Institute, Newark (J.Z., X.Z., D.E.V., T.M.N., S.B., Y.-T.S., L.C., S.F.V.); and Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., G.A.M.)
| | - Tara McNulty
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Cardiovascular Research Institute, Newark (J.Z., X.Z., D.E.V., T.M.N., S.B., Y.-T.S., L.C., S.F.V.); and Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., G.A.M.)
| | - Sanford Bishop
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Cardiovascular Research Institute, Newark (J.Z., X.Z., D.E.V., T.M.N., S.B., Y.-T.S., L.C., S.F.V.); and Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., G.A.M.)
| | - Zhe Sun
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Cardiovascular Research Institute, Newark (J.Z., X.Z., D.E.V., T.M.N., S.B., Y.-T.S., L.C., S.F.V.); and Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., G.A.M.)
| | - You-Tang Shen
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Cardiovascular Research Institute, Newark (J.Z., X.Z., D.E.V., T.M.N., S.B., Y.-T.S., L.C., S.F.V.); and Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., G.A.M.)
| | - Li Chen
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Cardiovascular Research Institute, Newark (J.Z., X.Z., D.E.V., T.M.N., S.B., Y.-T.S., L.C., S.F.V.); and Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., G.A.M.)
| | - Gerald A Meininger
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Cardiovascular Research Institute, Newark (J.Z., X.Z., D.E.V., T.M.N., S.B., Y.-T.S., L.C., S.F.V.); and Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., G.A.M.)
| | - Stephen F Vatner
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Cardiovascular Research Institute, Newark (J.Z., X.Z., D.E.V., T.M.N., S.B., Y.-T.S., L.C., S.F.V.); and Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., G.A.M.).
| |
Collapse
|
14
|
Butlin M, Lindesay G, Viegas KD, Avolio AP. Pressure dependency of aortic pulse wave velocity in vivo is not affected by vasoactive substances that alter aortic wall tension ex vivo. Am J Physiol Heart Circ Physiol 2015; 308:H1221-8. [PMID: 25770242 DOI: 10.1152/ajpheart.00536.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/10/2015] [Indexed: 11/22/2022]
Abstract
Aortic stiffness, a predictive parameter in cardiovascular medicine, is blood pressure dependent and experimentally requires isobaric measurement for meaningful comparison. Vasoactive drug administration to change peripheral resistance and blood pressure allows such isobaric comparison but may alter large conduit artery wall tension, directly changing aortic stiffness. This study quantifies effects of sodium nitroprusside (SNP, vasodilator) and phenylephrine (PE, vasoconstrictor) on aortic stiffness measured by aortic pulse wave velocity (aPWV) assessed by invasive pressure catheterization in anaesthetized Sprague-Dawley rats (n = 7). This was compared with nondrug-dependent alteration of blood pressure through reduced venous return induced by partial vena cava occlusion. In vivo drug concentration was estimated by modeling clearance rates. Ex vivo responses of excised thoracic and abdominal aortic rings to drugs was measured using myography. SNP administration did not alter aPWV compared with venous occlusion (P = 0.21-0.87). There was a 5% difference in aPWV with PE administration compared with venous occlusion (P < 0.05). The estimated in vivo maximum concentration of PE (7.0 ± 1.8 ×10(-7) M) and SNP (4.2 ± 0.6 ×10(-7) M) caused ex vivo equivalent contraction of 52 mmHg (thoracic) and 112 mmHg (abdominal) and relaxation of 96% (both abdominal and thoracic), respectively, despite having a negligible effect on aPWV in vivo. This study demonstrates that vasoactive drugs administered to alter systemic blood pressure have a negligible effect on aPWV and provide a useful tool to study pressure-normalized and pressure-dependent aPWV in large conduit arteries in vivo. However, similar drug concentrations affect aortic ring wall tension ex vivo. Future studies investigating in vivo and ex vivo kinetics will need to elucidate mechanisms for this marked difference.
Collapse
Affiliation(s)
- Mark Butlin
- The Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - George Lindesay
- The Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Kayla D Viegas
- The Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Alberto P Avolio
- The Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| |
Collapse
|
15
|
Dependence of arterial stiffness on pressure quantified in the realm of the cardiac cycle: towards a patient-specific approach? J Hypertens 2014; 33:257-9. [PMID: 25535877 DOI: 10.1097/hjh.0000000000000443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Pikilidou MI, Yavropoulou MP, Scuteri A. Can antihypertensive medication interfere with the vicious cycle between hypertension and vascular calcification? Cardiovasc Drugs Ther 2014; 28:61-71. [PMID: 24091855 DOI: 10.1007/s10557-013-6494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular calcification is a phenomenon of disturbed calcium deposition, as part of the calcium that is supposed to be deposited to our bones, is lodged to our vessels. There are two forms of vascular calcification, each with a distinct anatomical distribution and clinical relevance, namely the intimal and medial calcification. Studies have demonstrated that hypertension may cause vascular calcification but also that both types of calcification, especially medial, promote arterial rigidity and hence hypertension. Implications of this two-way road are largely unknown as there is no consensus yet on their exact clinical value. However, several antihypertensive medications seem to be able to interfere with the cycle of high blood pressure and vascular calcium deposits. The present review summarizes the up-to-date data regarding the effect of antihypertensive medication on vascular calcification.
Collapse
Affiliation(s)
- Maria I Pikilidou
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, St. Kiriakidi 1, 54636, Thessaloniki, Greece,
| | | | | |
Collapse
|
17
|
Ameer OZ, Salman IM, Avolio AP, Phillips JK, Butlin M. Opposing changes in thoracic and abdominal aortic biomechanical properties in rodent models of vascular calcification and hypertension. Am J Physiol Heart Circ Physiol 2014; 307:H143-51. [DOI: 10.1152/ajpheart.00139.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of hypertension on regional aortic biomechanical and structural properties in three rat models of vascular calcification: the hypertensive Lewis polycystic kidney (LPK; n = 13) model of chronic kidney disease, spontaneously hypertensive rats (SHRs; n = 12), and calcification in normotensive Lewis rats induced by vitamin D3 and nicotine (VDN; n = 8). Lewis and Wistar-Kyoto rats were controls. Thoracic and abdominal aortic stiffness parameters were assessed by tensile testing. In models where aortic stiffness differences compared with controls existed in both thoracic and abdominal segments, an additional cohort was quantified by histology for thoracic and abdominal aortic elastin, collagen, and calcification. LPK and VDN animals had higher thoracic breaking strain than control animals ( P < 0.01 and P < 0.05, respectively) and lower energy absorption within the tensile curve of the abdominal aorta ( P < 0.05). SHRs had a lower abdominal breaking stress than Wistar-Kyoto rats. LPK and VDN rats had more elastic lamellae fractures than control rats ( P < 0.001), which were associated with calcium deposition (thoracic R = 0.37, P = 0.048; abdominal: R = 0.40, P = 0.046). LPK rats had higher nuclear density than control rats ( P < 0.01), which was also evident in the thoracic but not abdominal aorta of VDN rats ( P < 0.01). In LPK and VDN rats, but not in control rats, media thickness and cross-sectional area were at least 1.5-fold greater in thoracic than abdominal regions. The calcification models chronic kidney disease and induced calcification in normotension caused differences in regional aortic stiffness not seen in a genetic form of hypertension. Detrimental abdominal aortic remodeling but lower stiffness in the thoracic aorta with disease indicates possible compensatory mechanisms in the proximal aorta.
Collapse
Affiliation(s)
- Omar Z. Ameer
- The Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Ibrahim M. Salman
- The Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Alberto P. Avolio
- The Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Jacqueline K. Phillips
- The Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Mark Butlin
- The Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Effect of Cardio-Metabolic Risk Factors Clustering with or without Arterial Hypertension on Arterial Stiffness: A Narrative Review. Diseases 2013. [DOI: 10.3390/diseases1010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Jung SM, Jandu S, Steppan J, Belkin A, An SS, Pak A, Choi EY, Nyhan D, Butlin M, Viegas K, Avolio A, Berkowitz DE, Santhanam L. Increased tissue transglutaminase activity contributes to central vascular stiffness in eNOS knockout mice. Am J Physiol Heart Circ Physiol 2013; 305:H803-10. [PMID: 23873798 DOI: 10.1152/ajpheart.00103.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) can modulate arterial stiffness by regulating both functional and structural changes in the arterial wall. Tissue transglutaminase (TG2) has been shown to contribute to increased central aortic stiffness by catalyzing the cross-linking of matrix proteins. NO S-nitrosylates and constrains TG2 to the cytosolic compartment and thereby holds its cross-linking function latent. In the present study, the role of endothelial NO synthase (eNOS)-derived NO in regulating TG2 function was studied using eNOS knockout mice. Matrix-associated TG2 and TG2 cross-linking function were higher, whereas TG2 S-nitrosylation was lower in the eNOS(-/-) compared with wild-type (WT) mice. Pulse-wave velocity (PWV) and blood pressure measured noninvasively were elevated in the eNOS(-/-) compared with WT mice. Intact aortas and decellularized aortic tissue scaffolds of eNOS(-/-) mice were significantly stiffer, as determined by tensile testing. The carotid arteries of the eNOS(-/-) mice were also stiffer, as determined by pressure-dimension analysis. Invasive methods to determine the PWV-mean arterial pressure relationship showed that PWV in eNOS(-/-) and WT diverge at higher mean arterial pressure. Thus eNOS-derived NO regulates TG2 localization and function and contributes to vascular stiffness.
Collapse
Affiliation(s)
- Sung Mee Jung
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Stiffness of large arteries has been long recognized as a significant determinant of pulse pressure. However, it is only in recent decades, with the accumulation of longitudinal data from large and varied epidemiological studies of morbidity and mortality associated with cardiovascular disease, that it has emerged as an independent predictor of cardiovascular risk. This has generated substantial interest in investigations related to intrinsic causative and associated factors responsible for the alteration of mechanical properties of the arterial wall, with the aim to uncover specific pathways that could be interrogated to prevent or reverse arterial stiffening. Much has been written on the haemodynamic relevance of arterial stiffness in terms of the quantification of pulsatile relationships of blood pressure and flow in conduit arteries. Indeed, much of this early work regarded blood vessels as passive elastic conduits, with the endothelial layer considered as an inactive lining of the lumen and as an interface to flowing blood. However, recent advances in molecular biology and increased technological sophistication for the detection of low concentrations of biochemical compounds have elucidated the highly important regulatory role of the endothelial cell affecting vascular function. These techniques have enabled research into the interaction of the underlying passive mechanical properties of the arterial wall with the active cellular and molecular processes that regulate the local environment of the load-bearing components. This review addresses these emerging concepts.
Collapse
Affiliation(s)
- Alberto Avolio
- Australian School of Advanced Medicine, Macquarie University, Sydney, N.S.W., Australia
| |
Collapse
|