1
|
Van Eijgen J, Van Winckel L, Hanssen H, Kotliar K, Vanassche T, Van Craenenbroeck EM, Cornelissen V, Van Craenenbroeck AH, Jones E, Stalmans I. Retinal vessel analysis to assess microvascular function in the healthy eye: A systematic review on the response to acute physiological and pathological stressors. Surv Ophthalmol 2025; 70:200-214. [PMID: 39592075 DOI: 10.1016/j.survophthal.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
The retina allows noninvasive in vivo assessment of the microcirculation. Autoregulation of the retinal microvasculature meets the changing requirements of local metabolic demand and maintains adequate blood flow. Analysis of the retinal vascular reactivity contributes to the understanding of regulatory physiology and its relationship to the systemic microcirculation. We conducted a literature review on the effect of different acute stimuli onto the retinal vasculature was conducted in accordance with the PRISMA guidelines. A literature search between 1-1-2005 and 17-10-2022 was performed in Medline, Embase, Web of Science and the Cochrane Library. We report the retinal vascular behavior of healthy individuals in response to both physiological and pathological stressors in 106 included articles. We provide ables of methodological characteristics for each stressor. Hypoxia, hypercapnia, high altitude, flicker light stimulation, rise of core temperature, blood pressure lowering, and the condition immediately after endurance exercise associate with larger retinal vessels. Hyperoxia, hypocapnia, blood pressure rise (Bayliss effect), and the condition during isometric exercise associate with smaller retinal vessels. The retinal vasculature is highly reactive to physiological and pathological stressors. This autoregulatory capacity is hypothesized to be a source of biomarkers for vascular health. Dynamic and static retinal vessel analysis are noninvasive methods to assess this (micro)vascular function. Exploring its diagnostic potential and application into clinical practice requires the development of standardized assessment methods, for which some recommendations are made.
Collapse
Affiliation(s)
- Jan Van Eijgen
- Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium; Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
| | - Lien Van Winckel
- Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium.
| | - Henner Hanssen
- Department of Sports, Exercise and Health, Medical Faculty, University of Basel, Basel, Switzerland.
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Campus Jülich, Heinrich-Mussmann-Str. 1, Jülich 52428, Germany.
| | - Thomas Vanassche
- Centre for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.2.28, Universiteitsplein 1, Antwerp 2610, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem 2650, Belgium.
| | - Véronique Cornelissen
- Research Group of Rehabilitation of Internal Disorders, Department of Rehabilitation Sciences, Faculty of Movement and Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | - Amaryllis H Van Craenenbroeck
- Division of Nephrology, University Hospitals UZ leuven, Leuven, Belgium; Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium.
| | - Elisabeth Jones
- Centre for Molecular and Vascular Biology, Herestraat 49, Bus 911, KU, Leuven 3000, Belgium; Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, Netherlands.
| | - Ingeborg Stalmans
- Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium; Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Noonan JE, Lamoureux EL, Sarossy M. Neuronal activity-dependent regulation of retinal blood flow. Clin Exp Ophthalmol 2015; 43:673-82. [PMID: 25824961 DOI: 10.1111/ceo.12530] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/23/2015] [Indexed: 02/01/2023]
Abstract
Blood flow in the retina is intrinsically regulated to meet the metabolic demands of its constituent cells. Flickering light or stationary contrast reversals induce an increase in blood flow within seconds of the stimulus onset. This phenomenon is thought to compensate for an increase in ganglion cell activity and energy consumption. Ganglion cell activity is in turn dependent on signals from photoreceptors, bipolar cells, horizontal cells and amacrine cells. The physiological properties of these neurons determine how each type is affected by a particular light characteristic. Neuronal activity then triggers the release of signalling molecules that dilate local blood vessels and increase blood flow. Nitric oxide has been implicated as an important mediator, but metabolites of arachidonic acid may also be involved. Detailed elucidation of these mechanisms, together with advances in imaging technology, may facilitate the use of neurovascular tests to improve the detection of retinal damage in pathological conditions.
Collapse
Affiliation(s)
- Jonathan E Noonan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Ecosse L Lamoureux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Singapore Eye Research Institute, Department of Ophthalmology, National University of Singapore, Singapore.,Duke-NUS Graduate Medical School, National University of Singapore, Singapore
| | - Marc Sarossy
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Nybo M, Hodgson LAB, Kawasaki R, Wong TY, Grauslund J. Hemoglobin is associated with retinal vascular fractals in type 1 diabetes patients. Ophthalmic Epidemiol 2014; 21:327-32. [PMID: 25133671 DOI: 10.3109/09286586.2014.950280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Retinal vascular fractal dimension, a measure of the density of the retinal vasculature, has been suggested as a marker of systemic microvascular disorders in diabetes. As hemoglobin concentration is tightly related to vascular physiology and hypoxia, the hypothesis was that hemoglobin concentration would be associated with retinal vascular fractals in a relevant population. METHODS In a cross-sectional study of 204 long-term type 1 diabetes patients from a population-based cohort, retinal digital photos were captured and graded for fractal dimension (Df) by International Retinal Imaging Software - Fractal (IRIS-Fractal). Df was calculated from a disc-centered retinal photo from the right eye. Hemoglobin concentrations were measured using routine equipment. RESULTS Of 175 patients with gradable images, median age was 57.7 years and median duration of diabetes was 42 years. Median retinal Df was 1.4606 (inter-quartile range 0.0264). A positive correlation was found between hemoglobin concentration and retinal vascular Df (r = 0.23, p = 0.0018). In a multiple linear regression model, Df was associated with hemoglobin (coefficient 0.0054 per 1.0 mmol/L increase in hemoglobin, p = 0.01) and age (coefficient -0.0046 for each 10-year increase in age, p = 0.04). CONCLUSION Hemoglobin correlated independently with retinal vascular fractals indicating a relationship between hemoglobin availability and retinal vascular structure.
Collapse
Affiliation(s)
- Mads Nybo
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense , Denmark
| | | | | | | | | |
Collapse
|
4
|
Ott C, Raff U, Schmidt S, Kistner I, Friedrich S, Bramlage P, Harazny JM, Schmieder RE. Effects of saxagliptin on early microvascular changes in patients with type 2 diabetes. Cardiovasc Diabetol 2014; 13:19. [PMID: 24423149 PMCID: PMC3897922 DOI: 10.1186/1475-2840-13-19] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/11/2014] [Indexed: 01/21/2023] Open
Abstract
Background Patients with diabetes mellitus are at increased risk for microvascular complications. Early changes in microcirculation are characterized by hyperperfusion (e.g. in the retina and kidney) and increased pulse wave reflection leading to increased aortic pressure. We investigated the effects of the DPP-4-inhibitor saxagliptin on early retinal microvascular changes. Methods In this double-blind, controlled, cross-over trial 50 patients (without clinical signs of microvascular alterations) with type-2 diabetes (mean duration of 4 years) were randomized to receive placebo or 5 mg saxagliptin for 6 weeks. Retinal arteriolar structure and retinal capillary flow (RCF) at baseline and during flicker-light exposure was assessed by scanning laser Doppler flowmetry. Central hemodynamics were assessed by pulse wave analysis. Results Postprandial blood glucose (9.27 ± 0.4 versus 10.1 ± 0.4 mmol/L; p = 0.001) and HbA1c (6.84 ± 0.15 (51 ± 1.6) versus 7.10 ± 0.17% (54 ± 1.9 mmol/mol); p < 0.001) were significantly reduced with saxagliptin treatment compared to placebo. RCF was significantly reduced after treatment with saxagliptin (288 ± 13.2 versus 314 ± 14.1 AU; p = 0.033). This was most pronounced in a subgroup of patients (n = 32) with a fall in postprandial blood glucose (280 ± 12.1 versus 314 ± 16.6 AU; p = 0.011). No significant changes in RCF were seen during flicker-light exposure between placebo and saxagliptin, but the vasodilatory capacity increased two-fold with saxagliptin treatment. Central augmentation pressure tended to be lower after treatment with saxagliptin (p = 0.094), and central systolic blood pressure was significantly reduced (119 ± 2.3 versus 124 ± 2.3 mmHg; p = 0.038). Conclusions Our data suggest that treatment with saxagliptin for 6 weeks normalizes retinal capillary flow and improves central hemodynamics in type-2 diabetes. Trial registration The study was registered at (ID: NCT01319357).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roland E Schmieder
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Ulmenweg 18, Erlangen, Germany.
| |
Collapse
|