1
|
Sanz-Gómez M, Manzano-Lista FJ, Vega-Martín E, González-Moreno D, Alcalá M, Gil-Ortega M, Somoza B, Pizzamiglio C, Ruilope LM, Aránguez I, Kolkhof P, Kreutz R, Fernández-Alfonso MS. Finerenone protects against progression of kidney and cardiovascular damage in a model of type 1 diabetes through modulation of proinflammatory and osteogenic factors. Biomed Pharmacother 2023; 168:115661. [PMID: 37832406 DOI: 10.1016/j.biopha.2023.115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The non-steroidal mineralocorticoid receptor antagonist (MRA) finerenone (FIN) improves kidney and cardiovascular outcomes in patients with chronic kidney disease (CKD) in type 2 diabetes (T2D). We explored the effect of FIN in a novel model of type 1 diabetic Munich Wistar Frömter (MWF) rat (D) induced by injection of streptozotocin (15 mg/kg) and additional exposure to a high-fat/high-sucrose diet. Oral treatment with FIN (10 mg/kg/day in rat chow) in diabetic animals (D-FIN) was compared to a group of D rats receiving no treatment and a group of non-diabetic untreated MWF rats (C) (n = 7-10 animals per group). After 6 weeks, D and D-FIN exhibited significantly elevated blood glucose levels (271.7 ± 67.1 mg/dl and 266.3 ± 46.8 mg/dl) as compared to C (110.3 ± 4.4 mg/dl; p < 0.05). D showed a 10-fold increase of kidney damage markers Kim-1 and Ngal which was significantly suppressed in D-FIN. Blood pressure, pulse wave velocity (PWV) and arterial collagen deposition were lower in D-FIN, associated to an improvement in endothelial function due to a reduction in pro-contractile prostaglandins, as well as reactive oxygen species (ROS) and inflammatory cytokines (IL-1, IL-6, TNFα and TGFβ) in perivascular and perirenal adipose tissue (PVAT and PRAT, respectively). In addition, FIN restored the imbalance observed in CKD between the procalcifying BMP-2 and the nephroprotective BMP-7 in plasma, kidney, PVAT, and PRAT. Our data show that treatment with FIN improves kidney and vascular damage in a new rat model of DKD with T1D associated with a reduction in inflammation, fibrosis and osteogenic factors independently from changes in glucose homeostasis.
Collapse
Affiliation(s)
- M Sanz-Gómez
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - F J Manzano-Lista
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - E Vega-Martín
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - D González-Moreno
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925 Madrid, Spain
| | - M Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925 Madrid, Spain
| | - M Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925 Madrid, Spain
| | - B Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925 Madrid, Spain
| | - C Pizzamiglio
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - L M Ruilope
- Unidad de Hipertensión, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - I Aránguez
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - P Kolkhof
- Cardiovascular Precision Medicines, Research & Early Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - R Kreutz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Clinical Pharmacology and Toxicology, Germany.
| | - M S Fernández-Alfonso
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
2
|
Vega-Martín E, González-Moreno D, Sanz-Gómez M, Guzmán-Aguayo AK, Manzano-Lista FJ, Schulz A, Aránguez I, Kreutz R, Fernández-Alfonso MS. Upregulation in Inflammation and Collagen Expression in Perirenal but Not in Mesenteric Adipose Tissue from Diabetic Munich Wistar Frömter Rats. Int J Mol Sci 2023; 24:17008. [PMID: 38069331 PMCID: PMC10706928 DOI: 10.3390/ijms242317008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Perirenal adipose tissue (PRAT) surrounding the kidney is emerging as a player and novel independent risk factor in diabetic kidney disease (DKD); DKD is a complication of diabetes and is a major cause of increased cardiovascular (CV) risk and CV mortality in affected patients. We determined the effect of diabetes induction on (i) kidney and CV damage and (ii) on the expression of proinflammatory and profibrotic factors in both the PRAT and the mesenteric adipose tissue (MAT) of Munich Wistar Frömter (MWF) rats. The 16-week-old male MWF rats (n = 10 rats/group) were fed standard chow (MWF-C) or a high-fat/high-sucrose diet for 6 weeks together with low-dose streptozotocin (15 mg/kg i.p.) at the start of dietary exposure (MWF-D). Phenotyping was performed at the end of treatment through determining water intake, urine excretion, and oral glucose tolerance; use of the homeostatic model assessment-insulin resistance index (HOMA-IR) evidenced the development of overt diabetes manifestation in MWF-D rats. The kidney damage markers Kim-1 and Ngal were significantly higher in MWF-D rats, as were the amounts of PRAT and MAT. A diabetes-induced upregulation in IL-1, IL-6, Tnf-α, and Tgf-β was observed in both the PRAT and the MAT. Col1A1 was increased in the PRAT but not in the MAT of MWF-D, whereas IL-10 was lower and higher in the PRAT and the MAT, respectively. Urinary albumin excretion and blood pressure were not further increased by diabetes induction, while heart weight was higher in the MWF-D. In conclusion, our results show a proinflammatory and profibrotic in vivo environment in PRAT induced by diabetes which might be associated with kidney damage progression in the MWF strain.
Collapse
Affiliation(s)
- Elena Vega-Martín
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain (A.K.G.-A.)
| | - Daniel González-Moreno
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain (A.K.G.-A.)
| | - Marta Sanz-Gómez
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain (A.K.G.-A.)
| | - Ana Karen Guzmán-Aguayo
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain (A.K.G.-A.)
| | | | - Angela Schulz
- Department of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Isabel Aránguez
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain (A.K.G.-A.)
| | - Reinhold Kreutz
- Department of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - María S. Fernández-Alfonso
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain (A.K.G.-A.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Imbalance in Bone Morphogenic Proteins 2 and 7 Is Associated with Renal and Cardiovascular Damage in Chronic Kidney Disease. Int J Mol Sci 2022; 24:ijms24010040. [PMID: 36613483 PMCID: PMC9820638 DOI: 10.3390/ijms24010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Arterial stiffness is a major vascular complication of chronic kidney disease (CKD). The development of renal damage, hypertension, and increased pulse wave velocity (PWV) in CKD might be associated with an imbalance in bone morphogenetic proteins (BMP)-2 and BMP-7. Plasma BMP-2 and BMP-7 were determined by ELISA in CKD patients (stages I-III; n = 95) and Munich Wistar Frömter (MWF) rats. Age-matched Wistar rats were used as a control. The expression of BMP-2, BMP-7, and profibrotic and calcification factors was determined in kidney and perivascular adipose tissues (PVAT). BMP-2 was higher in stage III CKD patients compared to control subjects. BMP-7 was lower at any CKD stage compared to controls, with a significant further reduction in stage III patients. A similar imbalance was observed in MWF rats together with the increase in systolic (SBP) and diastolic blood pressure (DBP), or pulse wave velocity (PWV). MWF exhibited elevated urinary albumin excretion (UAE) and renal expression of BMP-2 or kidney damage markers, Kim-1 and Ngal, whereas renal BMP-7 was significantly lower than in Wistar rats. SBP, DBP, PWV, UAE, and plasma creatinine positively correlated with the plasma BMP-2/BMP-7 ratio. Periaortic and mesenteric PVAT from MWF rats showed an increased expression of BMP-2 and profibrotic and calcification markers compared to Wistar rats, together with a reduced BMP-7 expression. BMP-2 and BMP-7 imbalance in plasma, kidney, and PVATs is associated with vascular damage, suggesting a profibrotic/pro-calcifying propensity associated with progressive CKD. Thus, their combined analysis stratified by CKD stages might be of clinical interest to provide information about the degree of renal and vascular damage in CKD.
Collapse
|
4
|
Novel indolic AMPK modulators induce vasodilatation through activation of the AMPK-eNOS-NO pathway. Sci Rep 2022; 12:4225. [PMID: 35273216 PMCID: PMC8913687 DOI: 10.1038/s41598-022-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Endothelial adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in the regulation of vascular tone through stimulating nitric oxide (NO) release in endothelial cells. Since obesity leads to endothelial dysfunction and AMPK dysregulation, AMPK activation might be an important strategy to restore vascular function in cardiometabolic alterations. Here, we report the identification of a novel AMPK modulator, the indolic derivative IND6, which shows affinity for AMPKα1β1γ1, the primary AMPK isoform in human EA.Hy926 endothelial cells. IND6 shows inhibitory action of the enzymatic activity in vitro, but increases the levels of p-Thr174AMPK, p-Ser1177eNOS and p-Ser79ACC in EA.Hy926. This paradoxical finding might be explained by the ability of IND6 to act as a mixed-type inhibitor, but also to promote the enzyme activation by adopting two distinct binding modes at the ADaM site. Moreover, functional assays reveal that IND6 increased the eNOS-dependent production of NO and elicited a concentration-dependent vasodilation of endothelium-intact rat aorta due to AMPK and eNOS activation, demonstrating a functional activation of the AMPK–eNOS–NO endothelial pathway. This kinase inhibition profile, combined with the paradoxical AMPK activation in cells and arteries, suggests that these new chemical entities may constitute a valuable starting point for the development of new AMPK modulators with therapeutic potential for the treatment of vascular complications associated with obesity.
Collapse
|
5
|
García-Prieto CF, Gil-Ortega M, Plaza A, Manzano-Lista FJ, González-Blázquez R, Alcalá M, Rodríguez-Rodríguez P, Viana M, Aránguez I, Gollasch M, Somoza B, Fernández-Alfonso MS. Caloric restriction induces H 2O 2 formation as a trigger of AMPK-eNOS-NO pathway in obese rats: Role for CAMKII. Free Radic Biol Med 2019; 139:35-45. [PMID: 31100477 DOI: 10.1016/j.freeradbiomed.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR) improves endothelial function through the upregulation of adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Moreover, hydrogen peroxide (H2O2) is upregulated in yeast subjected to CR. Our aim was to assess if mild short-term CR increases vascular H2O2 formation as a link with AMPK and eNOS activation. Twelve-week old Zucker obese (fa/fa) and control Zucker lean male rats were fed a standard chow either ad libitum (AL, n=10) or with a 20% CR (CR, n=10) for two weeks. CR significantly improved relaxation to ACh in fa/fa rats because of an enhanced endogenous production of H2O2 in aortic rings (H2O2 levels fa/faAL=0.5 ± 0.05 nmol/mg vs. H2O2 levels fa/faCR=0.76 ± 0.07 nmol/mg protein; p<0.05). Expression of mitochondrial superoxide dismutase (Mn-SOD) and total SOD activity were increased in aorta from fa/fa animals after CR. In cultured aortic endothelial cells, serum deprivation or 2-deoxy-d-glucose induced a significant increase in: i) superoxide anion and H2O2 levels, ii) p-AMPK/AMPK and p-eNOS/eNOS expression and iii) nitric oxide levels. This effect was reduced by catalase and strongly inhibited by Ca2+/calmodulin-dependent kinase II (CamkII) silencing. In conclusion, we propose that mild short-term CR might be a trigger of mechanisms aimed at protecting the vascular wall by the increase of H2O2, which then activates AMPK and nitric oxide release, thus improving endothelium-dependent relaxation. In addition, we demonstrate that CAMKII plays a key role in mediating CR-induced AMPK activation through H2O2 increase.
Collapse
Affiliation(s)
- Concha F García-Prieto
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - F J Manzano-Lista
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | | | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Isabel Aránguez
- Instituto Pluridisciplinar and Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Maik Gollasch
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
6
|
Beneficial effects of murtilla extract and madecassic acid on insulin sensitivity and endothelial function in a model of diet-induced obesity. Sci Rep 2019; 9:599. [PMID: 30679477 PMCID: PMC6345770 DOI: 10.1038/s41598-018-36555-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Infusions of murtilla leaves exhibit antioxidant, analgesic, and anti-inflammatory properties. Several compounds that are structurally similar to madecassic acid (MA), a component of murtilla leaf extract (ethyl acetate extract, EAE), have been shown to inhibit protein tyrosine phosphatase 1B (PTP1P). The aim of this study was to evaluate if EAE and two compounds identified in EAE (MA and myricetin [MYR]) could have a beneficial effect on systemic and vascular insulin sensitivity and endothelial function in a model of diet-induced obesity. Experiments were performed in 5-week-old male C57BL6J mice fed with a standard (LF) or a very high-fat diet (HF) for 4 weeks and treated with EAE, MA, MYR, or the vehicle as control (C). EAE significantly inhibited PTP1B. EAE and MA, but not MYR, significantly improved systemic insulin sensitivity in HF mice and vascular relaxation to Ach in aorta segments, due to a significant increase of eNOS phosphorylation and enhanced nitric oxide availability. EAE, MA, and MYR also accounted for increased relaxant responses to insulin in HF mice, thus evidencing that the treatments significantly improved aortic insulin sensitivity. This study shows for the first time that EAE and MA could constitute interesting candidates for treating insulin resistance and endothelial dysfunction associated with obesity.
Collapse
|
7
|
González-Blázquez R, Somoza B, Gil-Ortega M, Martín Ramos M, Ramiro-Cortijo D, Vega-Martín E, Schulz A, Ruilope LM, Kolkhof P, Kreutz R, Fernández-Alfonso MS. Finerenone Attenuates Endothelial Dysfunction and Albuminuria in a Chronic Kidney Disease Model by a Reduction in Oxidative Stress. Front Pharmacol 2018; 9:1131. [PMID: 30356804 PMCID: PMC6189469 DOI: 10.3389/fphar.2018.01131] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Albuminuria is an early marker of renovascular damage associated to an increase in oxidative stress. The Munich Wistar Frömter (MWF) rat is a model of chronic kidney disease (CKD), which exhibits endothelial dysfunction associated to low nitric oxide availability. We hypothesize that the new highly selective, non-steroidal mineralocorticoid receptor (MR) antagonist, finerenone, reverses both endothelial dysfunction and microalbuminuria. Twelve-week-old MWF (MWF-C; MWF-FIN) and aged-matched normoalbuminuric Wistar (W-C; W-FIN) rats were treated with finerenone (FIN, 10 mg/kg/day p.o.) or vehicle (C) for 4-week. Systolic blood pressure (SBP) and albuminuria were determined the last day of treatment. Finerenone lowered albuminuria by >40% and significantly reduced SBP in MWF. Aortic rings of MWF-C showed higher contractions to either noradrenaline (NA) or angiotensin II (Ang II), and lower relaxation to acetylcholine (Ach) than W-C rings. These alterations were reversed by finerenone to W-C control levels due to an upregulation in phosphorylated Akt and eNOS, and an increase in NO availability. Apocynin and 3-amino-1,2,4-triazole significantly reduced contractions to NA or Ang II in MWF-C, but not in MWF-FIN rings. Accordingly, a significant increase of Mn-superoxide dismutase (SOD) and Cu/Zn-SOD protein levels were observed in rings of MWF-FIN, without differences in p22phox, p47phox or catalase levels. Total SOD activity was increased in kidneys from MWF-FIN rats. In conclusion, finerenone improves endothelial dysfunction through an enhancement in NO bioavailability and a decrease in superoxide anion levels due to an upregulation in SOD activity. This is associated with an increase in renal SOD activity and a reduction of albuminuria.
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Miriam Martín Ramos
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Elena Vega-Martín
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Angela Schulz
- Department of Clinical Pharmacology and Toxicology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luis Miguel Ruilope
- Unidad de Hipertensión, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Medicina Preventiva y Salud Pública, Universidad Autónoma de Madrid, Madrid, Spain
| | - Peter Kolkhof
- Drug Discovery, Pharmaceuticals, Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany
| | - Reinhold Kreutz
- Department of Clinical Pharmacology and Toxicology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Translational science in albuminuria: a new view of de novo albuminuria under chronic RAS suppression. Clin Sci (Lond) 2018; 132:739-758. [DOI: 10.1042/cs20180097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 12/29/2022]
Abstract
The development of de novo albuminuria during chronic renin–angiotensin system (RAS) suppression is a clinical entity that remains poorly recognized in the biomedical literature. It represents a clear increment in global cardiovascular (CV) and renal risk that cannot be counteracted by RAS suppression. Although not specifically considered, it is clear that this entity is present in most published and ongoing trials dealing with the different forms of CV and renal disease. In this review, we focus on the mechanisms promoting albuminuria, and the predictors and new markers of de novo albuminuria, as well as the potential treatment options to counteract the excretion of albumin. The increase in risk that accompanies de novo albuminuria supports the search for early markers and predictors that will allow practising physicians to assess and prevent the development of de novo albuminuria in their patients.
Collapse
|
9
|
Pulido-Olmo H, Rodríguez-Sánchez E, Navarro-García JA, Barderas MG, Álvarez-Llamas G, Segura J, Fernández-Alfonso M, Ruilope LM, Ruiz-Hurtado G. Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9-Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA. Front Immunol 2017; 8:853. [PMID: 28791014 PMCID: PMC5523156 DOI: 10.3389/fimmu.2017.00853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
The protocol describes a novel, rapid, and no-wash one-step immunoassay for highly sensitive and direct detection of the complexes between matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) based on AlphaLISA® technology. We describe two procedures: (i) one approach is used to analyze MMP-9-TIMP-1 interactions using recombinant human MMP-9 with its corresponding recombinant human TIMP-1 inhibitor and (ii) the second approach is used to analyze native or endogenous MMP-9-TIMP-1 protein interactions in samples of human plasma. Evaluating native MMP-9-TIMP-1 complexes using this approach avoids the use of indirect calculations of the MMP-9/TIMP-1 ratio for which independent MMP-9 and TIMP-1 quantifications by two conventional ELISAs are needed. The MMP-9-TIMP-1 AlphaLISA® assay is quick, highly simplified, and cost-effective and can be completed in less than 3 h. Moreover, the assay has great potential for use in basic and preclinical research as it allows direct determination of native MMP-9-TIMP-1 complexes in circulating blood as biofluid.
Collapse
Affiliation(s)
- Helena Pulido-Olmo
- Laboratorio de Hipertensión y Riesgo Cardiovascular y Unidad de Hipertensión, Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Facultad de Farmacia, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Rodríguez-Sánchez
- Laboratorio de Hipertensión y Riesgo Cardiovascular y Unidad de Hipertensión, Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José Alberto Navarro-García
- Laboratorio de Hipertensión y Riesgo Cardiovascular y Unidad de Hipertensión, Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María G Barderas
- Laboratorio de Fisiopatologia Vascular, Hospital Nacional de Paraplejicos SESCAM, Toledo, Spain
| | - Gloria Álvarez-Llamas
- Departamento de Inmunologia, IIS-Fundacion Jimenez Diaz, REDinREN, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julián Segura
- Laboratorio de Hipertensión y Riesgo Cardiovascular y Unidad de Hipertensión, Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Luis M Ruilope
- Laboratorio de Hipertensión y Riesgo Cardiovascular y Unidad de Hipertensión, Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Medicina Preventiva y Salud Pública, Universidad Autónoma de Madrid, Madrid, Spain.,Escuela de Estudios Postdoctorales e Investigación, Universidad de Europa de Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Laboratorio de Hipertensión y Riesgo Cardiovascular y Unidad de Hipertensión, Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
10
|
Regulation of podoplanin expression by microRNA-29b associates with its antiapoptotic effect in angiotensin II-induced injury of human podocytes. J Hypertens 2016; 34:323-31. [PMID: 26867059 DOI: 10.1097/hjh.0000000000000799] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Angiotensin (Ang)II is involved in induction of proteinuria, renal injury, and apoptosis and thus a major contributor to the development of chronic kidney disease. Podocytes are of major importance for the pathogenesis of several kidney diseases. Decrease of podoplanin (PDPN) in podocytes and podocyte loss has been associated with the development of proteinuria. Little is known about the regulation and biological function of PDPN in podocytes and its role in AngII-mediated kidney damage. Here, we determined the influence of AngII on the expression of PDPN, microRNA (miRNA)-29b and miRNA-497 in human podocytes. Further, we analyzed the impact of small interfering RNA-mediated downregulation of PDPN on AngII-induced apoptosis and viability. Moreover, we characterized the role of miRNA-29b and miRNA-497 in expression regulation of PDPN. METHODS Cell viability and apoptosis were determined by functional assays. Expression analyses were done via Real-Time PCR and western blot analyses. Dual luciferase assay was performed to characterize miRNA-mediated expression control. RESULTS AngII increased the expression of miRNA-29b and reduced PDPN. Small interfering RNA-mediated downregulation of PDPN increased proapoptotic caspase-3 activation and cytochrome C translocation, whereas cell viability and Akt phosphorylation were reduced in AngII-stimulated podocytes. In contrast to miRNA-497, transfection of cells with miRNA-29b mimics significantly decreased PDPN. Cotransfection of cells with miRNA-29b and a dual luciferase reporter vector decreased the luciferase activity compared with controls. CONCLUSION These data demonstrate the posttranscriptional control of PDPN expression by miRNA-29b and support a role of PDPN as an antiapoptotic prosurvival factor in AngII-induced injury of human podocytes.
Collapse
|
11
|
Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function. J Hypertens 2016; 34:1556-69. [DOI: 10.1097/hjh.0000000000000943] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Abdel-Mageed SM, Mohamed EI. Comparative modeling of combined transport of water and graded-size molecules across the glomerular capillary wall. J Theor Biol 2016; 394:109-116. [PMID: 26807807 DOI: 10.1016/j.jtbi.2016.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/17/2015] [Accepted: 01/06/2016] [Indexed: 11/23/2022]
Abstract
Chronic kidney disease is a common and growing problem worldwide that necessitates recognition of individual risk and appropriate laboratory testing before its progression to end-stage renal failure, requiring dialysis or transplantation for survival. Clearance studies using various graded-size probe molecules established that the passage of molecules/proteins across the glomerular capillary barrier of mammalian kidneys is increasingly restricted as their size increase. Few mathematical models were developed to describe the dynamics of the size-selective functions of macromolecules across membranes and gelatins. In the present study, we compare the behavior of three mathematical descriptions for the Fiber Matrix theory, an Extended Fiber Matrix theory, and an Alternative Statistical Physics analysis to describe the size-selective function of the glomerular capillary barrier; using mainly its hemodynamic, morphometric and hydrodynamic variables; in two experimental rat models. The glomerular basement membrane was represented as a homogeneous three-dimensional network of fibers of uniform length (Lf), radius (Rf), total fractional solid volume of fibers (Vf) and characteristic Darcy permeability. The models were appropriate for simulating in vivo fractional clearance data of neutral Dextran and Ficoll macromolecules from two experimental rat models. We believe that the Lf, Rf and Vf best-fit numerical values may signify new insights for the diagnosis of human nephropathies.
Collapse
Affiliation(s)
| | - Ehab I Mohamed
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Egypt.
| |
Collapse
|
13
|
Development of albuminuria and enhancement of oxidative stress during chronic renin-angiotensin system suppression. J Hypertens 2016; 32:2082-91; discussion 2091. [PMID: 25033166 DOI: 10.1097/hjh.0000000000000292] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Albuminuria has been recently described in hypertensive patients under chronic renin-angiotensin system (RAS) suppression. We investigated whether this fact could be related to an increase in oxidative stress. METHODS We examined normoalbuminuric and albuminuric patients in stage 2 chronic kidney disease, both with more than 2 years of RAS blockade. The relationship between albuminuria and circulating biomarkers for both oxidative damage, that is carbonyl and malondialdehyde, as well as antioxidant defense, that is reduced glutathione, thiol groups, uric acid, bilirubin, or catalase, and superoxide scavenging activity, was assessed. RESULTS We found that only patients with albuminuria showed an important increase in carbonyls (P < 0.001) and malondialdehyde (P < 0.05) compared to normoalbuminuric patients. This increase in oxidative damage was also accompanied by a rise in catalase activity (P < 0.05) and low-molecular-weight antioxidants only when they were measured as total antioxidant capacity (P < 0.01). In order to establish the specific oxidative status of each group, new indexes of oxidative damage and antioxidant defense were calculated with all these markers following a mathematical and statistical approach. Although both pro-oxidant and antioxidant indexes were significantly increased in patients with albuminuria, only the oxidative damage index positively correlated with the increase of albumin/creatinine ratio (P = 0.0024). CONCLUSIONS We conclude that albuminuria is accompanied by an amplified oxidative damage in patients in early stages of chronic kidney disease. These results indicate that chronic RAS protection must be directed to avoid development of albuminuria and oxidative damage.
Collapse
|
14
|
Role of matrix metalloproteinase-9 in chronic kidney disease: a new biomarker of resistant albuminuria. Clin Sci (Lond) 2016; 130:525-38. [PMID: 26733721 DOI: 10.1042/cs20150517] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Resistant albuminuria, developed under adequate chronic blockade of the renin-angiotensin system, is a clinical problem present in a small number of patients with chronic kidney disease (CKD). The mechanism underlying this resistant albuminuria remains unknown. Matrix metalloproteinases (MMPs) are involved in the pathophysiology of cardiovascular and renal diseases. In the present study we tested the role of MMPs in resistant albuminuria. First we evaluated gelatinase MMP-2 and MMP-9 activity by zymography in the Munich Wistar Frömter (MWF) rat, a model of progressive albuminuria, and subsequently in patients with resistant albuminuria. Markers of oxidative stress were observed in the kidneys of MWF rats, together with a significant increase in pro-MMP-2 and active MMP-9 forms. These changes were normalized together with reduced albuminuria in consomic MWF-8(SHR) rats, in which chromosome 8 of MWF was replaced with the respective chromosome from spontaneously hypertensive rats. The MMP-2 and MMP-9 protein levels were similar in patients with normal and resistant albuminuria; however, high circulating levels of collagen IV, a specific biomarker of tissue collagen IV degradation, were observed in patients with resistant albuminuria. These patients showed a significant increase in gelatinase MMP-2 and MMP-9 activity, but only a significant increase in the active MMP-9 form quantified by ELISA, which correlated significantly with the degree of albuminuria. Although the expression of the tissue inhibitor of MMP-9 (TIMP)-1 was similar, a novel AlphaLISA assay demonstrated that the MMP-9-TIMP-1 interaction was reduced in patients with resistant albuminuria. It is of interest that oxidized TIMP-1 expression was higher in patients with resistant albuminuria. Therefore, increased circulating MMP-9 activity is associated with resistant albuminuria and a deleterious oxidative stress environment appears to be the underlying mechanism. These changes might contribute to the progression of CKD in these patients.
Collapse
|
15
|
Gil-Ortega M, García-Prieto CF, Ruiz-Hurtado G, Steireif C, González MC, Schulz A, Kreutz R, Fernández-Alfonso MS, Arribas S, Somoza B. Genetic predisposition to albuminuria is associated with increased arterial stiffness: role of elastin. Br J Pharmacol 2015; 172:4406-18. [PMID: 26075500 DOI: 10.1111/bph.13223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The Munich Wistar Frömter (MWF) rat strain represents an experimental model to study cardiovascular alterations under conditions of progressive albuminuria. The aim of this study was to evaluate the association between genetic predisposition to albuminuria and the development of arterial stiffness and/or vascular remodelling. EXPERIMENTAL APPROACH Experiments were performed in mesenteric arteries from 12-week-old MWF, Wistar Kyoto (WKY) and consomic MWF-6(SHR) and MWF-8(SHR) rats in which chromosomes 6 or 8 associated with albuminuria from MWF were replaced by the respective chromosome from spontaneously hypertensive rats (SHR). KEY RESULTS Incremental distensibility, wall stress and strain were reduced, and arterial stiffness was significantly increased in albuminuric MWF compared with WKY. Albuminuria suppression in both consomic strains was associated with lower β-values in MWF-8(SHR) and MWF-6(SHR) compared with MWF. Moreover, elastin content was significantly lower in MWF external elastic lamina compared with WKY and both consomic strains. In addition, a reduction in arterial external and internal diameter and cross-sectional area was detected in MWF compared with WKY, thus exhibiting an inward hypotrophic remodelling. However, these alterations remained unchanged in both consomic strains. CONCLUSION AND IMPLICATIONS These data demonstrate that albuminuria in MWF is associated with increased arterial stiffness due to a reduction of elastin content in the external elastic lamina. Moreover, inward hypotrophic remodelling in MWF is not directly associated with albuminuria. In contrast, we demonstrated that two major genetic loci affect both the development of albuminuria and arterial stiffness, thus linking albuminuria and impairment of mechanical properties of resistance arteries.
Collapse
Affiliation(s)
- M Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU - San Pablo, Madrid, Spain
| | - C F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU - San Pablo, Madrid, Spain
| | - G Ruiz-Hurtado
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense, Madrid, Spain.,Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - C Steireif
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense, Madrid, Spain.,Department of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin, Berlin, Germany
| | - M C González
- Departamento de Fisiología, Universidad Autónoma, Madrid, Spain
| | - A Schulz
- Department of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin, Berlin, Germany
| | - R Kreutz
- Department of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin, Berlin, Germany
| | - M S Fernández-Alfonso
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - S Arribas
- Departamento de Fisiología, Universidad Autónoma, Madrid, Spain
| | - B Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU - San Pablo, Madrid, Spain
| |
Collapse
|
16
|
Herlan L, Unland J, Langer S, Schulte L, Schütten S, García-Prieto CF, Kossmehl P, Fernández-Alfonso MS, Schulz A, Kreutz R. Development of progressive albuminuria in male Munich Wistar Frömter rats is androgen dependent. Physiol Genomics 2015; 47:281-9. [PMID: 25969455 DOI: 10.1152/physiolgenomics.00008.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Munich Wistar Frömter (MWF) rats develop spontaneous albuminuria that is linked to autosomal genetic loci and inherit a nephron deficit in both female and male animals, respectively. However, albuminuria and kidney damage are clearly more pronounced in males. Here we tested whether androgens and the androgen receptor influence albuminuria in male MWF. We first demonstrated in a pilot study that orchiectomy (Ox) of male MWF led to a significant suppression of urinary albumin excretion (UAE), while continuous testosterone supplementation in MWF Ox led to UAE levels similar to sham-operated (Sham) MWF rats. Subsequently, we performed a comparative main study between male MWF and normal Wistar rats to evaluate the effect of the androgen receptor on UAE development in adult animals up to the age of 18 wk. MWF Sham developed a marked increase in UAE compared with Wistar Sham (48.30 ± 6.16 vs. 0.42 ± 0.08 mg/24 h, P < 0.0001). UAE was significantly lower in MWF Ox compared with MWF Sham (-55%, P < 0.0001). In MWF Ox animals supplemented with testosterone and treated with the androgen receptor antagonist flutamide (OxTF) UAE at 18 wk was even lower compared with MWF Ox (-71%, P < 0.01) and similar to age-matched female MWF. The mRNA expression of renal tubular injury markers Kim1 and NGAL was increased in MWF Sham compared with Wistar Sham (P < 0.0008, respectively) and expression decreased significantly in MWF OxTF (P < 0.0004, respectively). Thus, the sexual dimorphism in albuminuria development in MWF can be attributed to testosterone and the androgen receptor in male rats.
Collapse
Affiliation(s)
- Laura Herlan
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Unland
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Langer
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Schulte
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrina Schütten
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Concha F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain; and
| | - Peter Kossmehl
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Angela Schulz
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany;
| |
Collapse
|
17
|
García-Prieto CF, Hernández-Nuño F, Rio DD, Ruiz-Hurtado G, Aránguez I, Ruiz-Gayo M, Somoza B, Fernández-Alfonso MS. High-fat diet induces endothelial dysfunction through a down-regulation of the endothelial AMPK-PI3K-Akt-eNOS pathway. Mol Nutr Food Res 2014; 59:520-32. [PMID: 25421217 DOI: 10.1002/mnfr.201400539] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/08/2014] [Accepted: 11/13/2014] [Indexed: 11/11/2022]
Abstract
SCOPE Activation of endothelial adenosine monophosphate-activated protein kinase (AMPK) contributes to increase nitric oxide (NO) availability. The aim of this study was to assess if high-fat diet (HFD)-induced endothelial dysfunction is linked to AMPK deregulation. METHODS AND RESULTS Twelve-week-old Sprague Dawley male rats were assigned either to control (10 kcal % from fat) or to HFD (45 kcal % from fat) for 8 wk. HFD rats segregated in obesity-prone (OP) or obesity-resistant (OR) rats according to body weight. HFD triggered an impaired glucose management together with impaired endothelium-dependent relaxation, reduced endothelial AMPK activity and lower NO availability in aortic rings of OP and OR cohorts. Relaxation evoked by AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) was reduced in both OP and OR rings, which exhibited lower p-AMPKα-Thr(172) /AMPKα ratios that negatively correlated with plasma non-esterified fatty acids (NEFA) and triglycerides (TG). Inhibition of PI3K (wortmannin, 10(-7) M) or Akt (triciribine, 10(-5) M) reduced relaxation to AICAR only in the control group (p < 0.001). Akt (p-Akt-Ser(473) ) and eNOS phosphorylation (p-eNOS-Ser(1177) ) were significantly reduced in OP and OR (p < 0.01). CONCLUSION Endothelial dysfunction caused by HFD is related to a dysfunctional endothelial AMPK-PI3K-Akt-eNOS pathway correlating with the increase of plasma NEFA, TG, and an impaired glucose management.
Collapse
Affiliation(s)
- Concha F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
García-Prieto CF, Pulido-Olmo H, Ruiz-Hurtado G, Gil-Ortega M, Aranguez I, Rubio MA, Ruiz-Gayo M, Somoza B, Fernández-Alfonso MS. Mild caloric restriction reduces blood pressure and activates endothelial AMPK-PI3K-Akt-eNOS pathway in obese Zucker rats. Vascul Pharmacol 2014; 65-66:3-12. [PMID: 25530153 DOI: 10.1016/j.vph.2014.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/08/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Genetic obesity models exhibit endothelial dysfunction associated to adenosine monophosphate-activated protein kinase (AMPK) dysregulation. This study aims to assess if mild short-term caloric restriction (CR) restores endothelial AMPK activity leading to an improvement in endothelial function. Twelve-week old Zucker lean and obese (fa/fa) male rats had access to standard chow either ad libitum (AL, n=8) or 80% of AL (CR, n=8) for two weeks. Systolic blood pressure was significantly higher in fa/fa AL rats versus lean AL animals, but was normalized by CR. Endothelium-dependent relaxation to acetylcholine (ACh, 10(-9) to 10(-4) M) was reduced in fa/fa AL compared to control lean AL rats (p<0.001), and restored by CR. The AMPK activator AICAR (10(-5) to 8·10(-3) M) elicited a lower relaxation in fa/fa AL rings that was normalized by CR (p<0.001). Inhibition of PI3K (wortmannin, 10(-7) M), Akt (triciribine, 10(-5) M), or eNOS (L-NAME, 10(-4) M) markedly reduced AICAR-induced relaxation in lean AL, but not in fa/fa AL rats. These inhibitions were restored by CR in Zucker fa/fa rings. These data show that mild short-term CR improves endothelial function and lowers blood pressure in obesity due to the activation of the AMPK-PI3K-Akt-eNOS pathway.
Collapse
Affiliation(s)
- C F García-Prieto
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - H Pulido-Olmo
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; Unidad de Hipertensión, imas12, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - G Ruiz-Hurtado
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; Unidad de Hipertensión, imas12, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - M Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - I Aranguez
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - M A Rubio
- Servicio de Endocrinología y Nutrición, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - M Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - B Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - M S Fernández-Alfonso
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
19
|
|