1
|
Boroumand N, Baghdissar C, Elihn K, Lundholm L. Nicotine interacts with DNA lesions induced by alpha radiation which may contribute to erroneous repair in human lung epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117009. [PMID: 39244876 DOI: 10.1016/j.ecoenv.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE Epidemiological studies show that radon and cigarette smoke interact in inducing lung cancer, but the contribution of nicotine in response to alpha radiation emitted by radon is not well understood. MATERIALS AND METHODS Bronchial epithelial BEAS-2B cells were either pre-treated with 2 µM nicotine during 16 h, exposed to radiation, or the combination. DNA damage, cellular and chromosomal alterations, oxidative stress as well as inflammatory responses were assessed to investigate the role of nicotine in modulating responses. RESULTS Less γH2AX foci were detected at 1 h after alpha radiation exposure (1-2 Gy) in the combination group versus alpha radiation alone, whereas nicotine alone had no effect. Comet assay showed less DNA breaks already just after combined exposure, supported by reduced p-ATM, p-DNA-PK, p-p53 and RAD51 at 1 h, compared to alpha radiation alone. Yet the frequency of translocations was higher in the combination group at 27 h after irradiation. Although nicotine did not alter G2 arrest at 24 h, it assisted in cell cycle progression at 48 h post radiation. A slightly faster recovery was indicated in the combination group based on cell viability kinetics and viable cell counts, and significantly using colony formation assay. Pan-histone acetyl transferase inhibition using PU139 blocked the reduction in p-p53 and γH2AX activation, suggesting a role for nicotine-induced histone acetylation in enabling rapid DNA repair. Nicotine had a modest effect on reactive oxygen species induction, but tended to increase alpha particle-induced pro-inflammatory IL-6 and IL-1β (4 Gy). Interestingly, nicotine did not alter gamma radiation-induced γH2AX foci. CONCLUSIONS This study provides evidence that nicotine modulates alpha-radiation response by causing a faster but more error-prone repair, as well as rapid recovery, which may allow expansion of cells with genomic instabilities. These results hold implications for estimating radiation risk among nicotine users.
Collapse
Affiliation(s)
- Nadia Boroumand
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Carol Baghdissar
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, Sweden
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden.
| |
Collapse
|
2
|
Maier A, Bailey T, Hinrichs A, Lerchl S, Newman RT, Fournier C, Vandevoorde C. Experimental Setups for In Vitro Studies on Radon Exposure in Mammalian Cells-A Critical Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095670. [PMID: 37174189 PMCID: PMC10178159 DOI: 10.3390/ijerph20095670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Naturally occurring radon and its short lived progeny are the second leading cause of lung cancer after smoking, and the main risk factor for non-smokers. The radon progeny, mainly Polonium-218 (218Po) and Polonium-214 (214Po), are responsible for the highest dose deposition in the bronchial epithelium via alpha-decay. These alpha-particles release a large amount of energy over a short penetration range, which results in severe and complex DNA damage. In order to unravel the underlying biological mechanisms which are triggered by this complex DNA damage and eventually give rise to carcinogenesis, in vitro radiobiology experiments on mammalian cells have been performed using radon exposure setups, or radon analogues, which mimic alpha-particle exposure. This review provides an overview of the different experimental setups, which have been developed and used over the past decades for in vitro radon experiments. In order to guarantee reliable results, the design and dosimetry of these setups require careful consideration, which will be emphasized in this work. Results of these in vitro experiments, particularly on bronchial epithelial cells, can provide valuable information on biomarkers, which can assist to identify exposures, as well as to study the effects of localized high dose depositions and the heterogeneous dose distribution of radon.
Collapse
Affiliation(s)
- Andreas Maier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Tarryn Bailey
- Department of Physics, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, NRF-iThemba LABS, Cape Town 7129, South Africa
| | - Annika Hinrichs
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Physics Department, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Sylvie Lerchl
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Richard T Newman
- Department of Physics, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, NRF-iThemba LABS, Cape Town 7129, South Africa
| |
Collapse
|
3
|
Madas BG, Boei J, Fenske N, Hofmann W, Mezquita L. Effects of spatial variation in dose delivery: what can we learn from radon-related lung cancer studies? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:561-577. [PMID: 36208308 PMCID: PMC9630403 DOI: 10.1007/s00411-022-00998-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
Exposure to radon progeny results in heterogeneous dose distributions in many different spatial scales. The aim of this review is to provide an overview on the state of the art in epidemiology, clinical observations, cell biology, dosimetry, and modelling related to radon exposure and its association with lung cancer, along with priorities for future research. Particular attention is paid on the effects of spatial variation in dose delivery within the organs, a factor not considered in radiation protection. It is concluded that a multidisciplinary approach is required to improve risk assessment and mechanistic understanding of carcinogenesis related to radon exposure. To achieve these goals, important steps would be to clarify whether radon can cause other diseases than lung cancer, and to investigate radon-related health risks in children or persons at young ages. Also, a better understanding of the combined effects of radon and smoking is needed, which can be achieved by integrating epidemiological, clinical, pathological, and molecular oncology data to obtain a radon-associated signature. While in vitro models derived from primary human bronchial epithelial cells can help to identify new and corroborate existing biomarkers, they also allow to study the effects of heterogeneous dose distributions including the effects of locally high doses. These novel approaches can provide valuable input and validation data for mathematical models for risk assessment. These models can be applied to quantitatively translate the knowledge obtained from radon exposure to other exposures resulting in heterogeneous dose distributions within an organ to support radiation protection in general.
Collapse
Affiliation(s)
- Balázs G Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary.
| | - Jan Boei
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nora Fenske
- Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | - Werner Hofmann
- Biological Physics, Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomic and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| |
Collapse
|
4
|
Madas BG, Wojcik A. The 2020 MELODI workshop on the effects of spatial and temporal variation in dose delivery. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:479-483. [PMID: 36280614 PMCID: PMC9592538 DOI: 10.1007/s00411-022-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
A key activity of MELODI is to organise annual European meetings where scientific results and future directions and strategies of relevant research are discussed. The annual meetings, previously organised solely under the auspices of MELODI are, since 2016, jointly organised by the European platforms and referred to as European Radiation Protection Weeks (ERPW). In addition to ERPW meetings, MELODI organises and finances annual workshops dedicated to specific topics. Outputs and recommendations from the meetings are published as review articles. The 2020 workshop focussed on one of the cross cutting topics: the effects of spatial and temporal variation in dose delivery on disease risk. The current issue of REBS includes five review articles from the workshop on the effects of spatial and temporal variation in dose delivery and this editorial is a short summary of their content.
Collapse
Affiliation(s)
- Balázs G. Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
- Institute for Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
5
|
Talaat K, Hecht A, Xi J. A comparison of CFPD, compartment, and uniform distribution models for radiation dosimetry of radionuclides in the lung. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:739-763. [PMID: 33823493 DOI: 10.1088/1361-6498/abf548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Radioactive aerosols that arise from natural sources and nuclear accidents can be a long-term hazard to human health. Despite the heterogeneous particle deposition in the respiratory tract, uniform aerosol doses have long been assumed in respiratory radiation dosimetry predictions, such as in the compartment and uniform distribution models. It is unclear how these deposition patterns affect internal radiation doses, which are critical in the health assessment of radioactive hazards. This work seeks to quantify the radio-dosimetry sensitivity to initial deposition patterns by comparing computational and compartment/uniform models. A new approach was developed to implement the compartment model into voxel phantoms (e.g. VIP-man) for radiation dosimetry. The calculated radiation fluence, energy deposition density and organ doses were compared to those obtained from coupling computational fluid-particle dynamics (CFPD) with Monte Carlo radiation transport and to those obtained from uniform source distribution approximation. The results show that the source particle distribution within the respiratory system substantially influences the radiation dosimetry distribution. The compartment and uniform models underestimated aerosol deposition in the crania ridge, leading to lower doses in the trachea and surrounding organs. For 0.5 MeV gammas, the CFPD-Monte Carlo N-particle (MCNP) model predicted a tracheal dose twice that of the compartment model and four times the uniform model. For 1 MeV betas, the CFPD-MCNP-predicted tracheal dose is 2.6 times that of the compartment model and 14 times the uniform model. Compared to the compartment/uniform models, the CFPD approach predicted a 50% lower beta dose in the lung but higher beta doses in the heart (six times), liver (four times) and stomach (2.5 times). It is suggested that including compartments for the lung periphery and tracheal carina ridge may improve the dosimetry accuracy of compartment models.
Collapse
Affiliation(s)
- Khaled Talaat
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM, 87131, United States of America
| | - Adam Hecht
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM, 87131, United States of America
| | - Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Falmouth Hall 202B, Lowell, MA, 01854, United States of America
| |
Collapse
|
6
|
Hartel C, Nasonova E, Ritter S, Friedrich T. Alpha-Particle Exposure Induces Mainly Unstable Complex Chromosome Aberrations which do not Contribute to Radiation-Associated Cytogenetic Risk. Radiat Res 2021; 196:561-573. [PMID: 34411274 DOI: 10.1667/rade-21-00116.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 11/03/2022]
Abstract
The mechanism underlying the carcinogenic potential of α radiation is not fully understood, considering that cell inactivation (e.g., mitotic cell death) as a main consequence of exposure efficiently counteracts the spreading of heritable DNA damage. The aim of this study is to improve our understanding of the effectiveness of α particles in inducing different types of chromosomal aberrations, to determine the respective values of the relative biological effectiveness (RBE) and to interpret the results with respect to exposure risk. Human peripheral blood lymphocytes (PBLs) from a single donor were exposed ex vivo to doses of 0-6 Gy X rays or 0-2 Gy α particles. Cells were harvested at two different times after irradiation to account for the mitotic delay of heavily damaged cells, which is known to occur after exposure to high-LET radiation (including α particles). Analysis of the kinetics of cells reaching first or second (and higher) mitosis after irradiation and aberration data obtained by the multiplex fluorescence in situ hybridization (mFISH) technique are used to determine of the cytogenetic risk, i.e., the probability for transmissible aberrations in surviving lymphocytes. The analysis shows that the cytogenetic risk after α exposure is lower than after X rays. This indicates that the actually observed higher carcinogenic effect of α radiation is likely to stem from small scale mutations that are induced effectively by high-LET radiation but cannot be resolved by mFISH analysis.
Collapse
Affiliation(s)
- C Hartel
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - E Nasonova
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany.,Joint Institute for Nuclear Research, Laboratory of Radiation Biology, Dubna, Russia
| | - S Ritter
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - T Friedrich
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| |
Collapse
|
7
|
Maier A, Wiedemann J, Adrian JA, Dornhecker M, Zipf A, Kraft-Weyrather W, Kraft G, Richter S, Teuscher N, Fournier C. α-Irradiation setup for primary human cell cultures. Int J Radiat Biol 2019; 96:206-213. [PMID: 31682776 DOI: 10.1080/09553002.2020.1683641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: We present an α-irradiation setup for the irradiation of primary human cell cultures under controlled conditions using 241Am α-particles.Materials and Methods: To irradiate samples with α-particles in a valid manner, a reliable dosimetry is a great challenge because of the short α-range and the complex energy spectrum. Therefore, the distance between α-source and sample must be minimal. In the present setup, this is achieved by cells growing on a 2 μm thick biaxially-oriented polyethylene terephthalate (boPET) foil which is only 2.7 mm apart from the source. A precise and reproducible exposure time is realized through a mechanical shutter. The fluence, energy spectra and the corresponding linear energy transfer are determined by the source geometry and the material traversed. They were measured and calculated, yielding a dose rate of 8.2 ± 2.4 Gy/min. To improve cell growth on boPET foils, they were treated with air plasma. This treatment increased the polarity and thus the ability of cells attaching to the surface of the foil. Several tests including cell growth, staining for a marker of DNA double-strand breaks and a colony-forming assay were performed and confirm our dosimetry.Conclusion: With our setup, it is possible to irradiate cell cultures under defined conditions with α-particles. The plasma-treated foil is suitable for primary human cell cultures as shown in cell experiments, confirming also the expected number of particle traversals.
Collapse
Affiliation(s)
- Andreas Maier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Julia Wiedemann
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Julia Anna Adrian
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Physics Department, Technical University, Darmstadt, Germany
| | - Maximilian Dornhecker
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Biophysics Department, Goethe University, Frankfurt, Germany
| | - Andreas Zipf
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Physics Department, Technical University, Darmstadt, Germany
| | | | - Gerhard Kraft
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Sandra Richter
- Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS, Halle, Germany
| | - Nico Teuscher
- Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS, Halle, Germany
| | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
8
|
Lee US, Kim EH. Combined effect of alpha particles and cigarette smoke on human lung epithelial cells in vitro. Int J Radiat Biol 2019; 95:1276-1286. [PMID: 31145654 DOI: 10.1080/09553002.2019.1625491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023]
Abstract
Purpose: The combined toxicity of alpha particles and cigarette smoke to the critical cells in the lungs was investigated to assess the risk of smoking workers who handle naturally occurring radioactive materials. Materials and methods: The toxicity of alpha particles and cigarette smoke extract (CSE) was evaluated in terms of DNA double-strand break (DSB) induction and clonogenic cell death of human lung epithelial cells in vitro. The cells were exposed to alpha particles at doses of up to 0.25 Gy for gamma-H2AX assay and from 1.25 Gy to 5 Gy for clonogenic assay. CSE exposure of the cells was facilitated in the culture medium at CSE concentrations ranging from 1% to 12%. Additional experiments were performed using mouse endothelial cells for comparison. Results: The increases in the levels of DNA DSBs were linearly dependent on radiation dose and CSE concentration. The CSE-treated cells also responded with a linearly increasing number of DNA DSBs to the radiation dose. Both human lung epithelial cells and mouse endothelial cells showed exponential decreases in clonogenic surviving fraction as the dose from alpha particle exposure increased. Both cells responded with the clonogenic surviving fractions decreasing in a linear proportion to the CSE concentration in the culture medium. Conclusion: In our experimental in vitro setup, CSE treatment and alpha particle exposure affected the cells in an additive manner either for DNA DSB production or for clonogenic cell death induction.
Collapse
Affiliation(s)
- Ui-Seob Lee
- Radiation Bioengineering Laboratory, Department of Nuclear Engineering, Seoul National University , Seoul , Republic of Korea
| | - Eun-Hee Kim
- Radiation Bioengineering Laboratory, Department of Nuclear Engineering, Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
9
|
Differential expression of NPM, GSTA3, and GNMT in mouse liver following long-term in vivo irradiation by means of uranium tailings. Biosci Rep 2018; 38:BSR20180536. [PMID: 30061177 PMCID: PMC6200700 DOI: 10.1042/bsr20180536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/21/2018] [Accepted: 07/26/2018] [Indexed: 12/19/2022] Open
Abstract
Uranium tailings (UT) are formed as a byproduct of uranium mining and are of potential risk to living organisms. In the present study, we sought to identify potential biomarkers associated with chronic exposure to low dose rate γ radiation originating from UT. We exposed C57BL/6J mice to 30, 100, or 250 μGy/h of gamma radiation originating from UT samples. Nine animals were included in each treatment group. We observed that the liver central vein was significantly enlarged in mice exposed to dose rates of 100 and 250 μGy/h, when compared with nonirradiated controls. Using proteomic techniques, we identified 18 proteins that were differentially expressed (by a factor of at least 2.5-fold) in exposed animals, when compared with controls. We chose glycine N-methyltransferase (GNMT), glutathione S-transferase A3 (GSTA3), and nucleophosmin (NPM) for further investigations. Our data showed that GNMT (at 100 and 250 μGy/h) and NPM (at 250 μGy/h) were up-regulated, and GSTA3 was down-regulated in all of the irradiated groups, indicating that their expression is modulated by chronic gamma radiation exposure. GNMT, GSTA3, and NPM may therefore prove useful as biomarkers of gamma radiation exposure associated with UT. The mechanisms underlying those changes need to be further studied.
Collapse
|
10
|
Madas BG, Drozsdik EJ. Effects of mucus thickness and goblet cell hyperplasia on microdosimetric quantities characterizing the bronchial epithelium upon radon exposure. Int J Radiat Biol 2018; 94:967-974. [PMID: 30265181 DOI: 10.1080/09553002.2018.1511931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The most exposed tissue upon radon exposure is the bronchial epithelium where goblet cells serve as responsive and adaptable front-line defenders. They can rapidly produce a vast amount of mucus, and can change in number, in response to airway insults. The objective of the present study is to quantify the effects of mucus discharge and goblet cell hyperplasia on the microscopic dose consequences of macroscopic radon exposures. METHODS For this purpose, computational models of the bronchial epithelium and alpha-particle transport have been prepared and applied to quantify the hits received and doses absorbed by cell nuclei in case of different mucus thicknesses and goblet cell number. RESULTS AND CONCLUSIONS Both mucus discharge and induction of goblet cell hyperplasia reduce radiation burden at the cellular level, and as such they both can be considered as radioadaptive responses to radon exposure. As compared to basal cell hyperplasia, goblet cell hyperplasia is more effective in reducing the microscopic dose consequences of a given macroscopic exposure. Such changes in exposure geometry highlight the need for improvements in the application of biokinetic and dosimetry models for incorporated radionuclides as well as the dose and dose rate effectiveness factor.
Collapse
Affiliation(s)
| | - Emese J Drozsdik
- a MTA Centre for Energy Research , Budapest , Hungary.,b Doctoral School of Physics , ELTE Eötvös Loránd University , Budapest , Hungary
| |
Collapse
|
11
|
Kreuzer M, Auvinen A, Cardis E, Durante M, Harms-Ringdahl M, Jourdain JR, Madas BG, Ottolenghi A, Pazzaglia S, Prise KM, Quintens R, Sabatier L, Bouffler S. Multidisciplinary European Low Dose Initiative (MELODI): strategic research agenda for low dose radiation risk research. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:5-15. [PMID: 29247291 PMCID: PMC5816101 DOI: 10.1007/s00411-017-0726-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/10/2017] [Indexed: 05/05/2023]
Abstract
MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).
Collapse
Affiliation(s)
- M Kreuzer
- Department of Radiation Protection and Health, Federal Office for Radiation Protection, BfS, Neuherberg, Germany.
| | - A Auvinen
- University of Tampere, Tampere, Finland
- STUK, Helsinki, Finland
| | - E Cardis
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - M Durante
- Institute for Fundamental Physics and Applications, TIFPA, Trento, Italy
| | - M Harms-Ringdahl
- Centre for Radiation Protection Research, Stockholm University, Stockholm, Sweden
| | - J R Jourdain
- Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses, France
| | - B G Madas
- Environmental Physics Department, MTA Centre for Energy Research, Budapest, Hungary
| | - A Ottolenghi
- Physics Department, University of Pavia, Pavia, Italy
| | - S Pazzaglia
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - K M Prise
- Queens University Belfast, Belfast, UK
| | - R Quintens
- Belgian Nuclear Research Centre, SCK-CEN, Mol, Belgium
| | - L Sabatier
- French Atomic Energy Commission, CEA, Paris, France
| | | |
Collapse
|
12
|
Madas BG. Radon induced hyperplasia: effective adaptation reducing the local doses in the bronchial epithelium. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:653-666. [PMID: 27517484 DOI: 10.1088/0952-4746/36/3/653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There is experimental and histological evidence that chronic irritation and cell death may cause hyperplasia in the exposed tissue. As the heterogeneous deposition of inhaled radon progeny results in high local doses at the peak of the bronchial bifurcations, it was proposed earlier that hyperplasia occurs in these deposition hot spots upon chronic radon exposure. The objective of the present study is to quantify how the induction of basal cell hyperplasia modulates the microdosimetric consequences of a given radon exposure. For this purpose, computational epithelium models were constructed with spherical cell nuclei of six different cell types based on histological data. Basal cell hyperplasia was modelled by epithelium models with additional basal cells and increased epithelium thickness. Microdosimetry for alpha-particles was performed by an own-developed Monte-Carlo code. Results show that the average tissue dose, and the average hit number and dose of basal cells decrease by the increase of the measure of hyperplasia. Hit and dose distribution reveal that the induction of hyperplasia may result in a basal cell pool which is shielded from alpha-radiation. It highlights that the exposure history affects the microdosimetric consequences of a present exposure, while the biological and health effects may also depend on previous exposures. The induction of hyperplasia can be considered as a radioadaptive response at the tissue level. Such an adaptation of the tissue challenges the validity of the application of the dose and dose rate effectiveness factor from a mechanistic point of view. As the location of radiosensitive target cells may change due to previous exposures, dosimetry models considering the tissue geometry characteristic of normal conditions may be inappropriate for dose estimation in case of protracted exposures. As internal exposures are frequently chronic, such changes in tissue geometry may be highly relevant for other incorporated radionuclides.
Collapse
Affiliation(s)
- Balázs G Madas
- Radiation Biophysics Group, Environmental Physics Department, Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Konkoly-Thege Miklós út 29-33., Hungary
| |
Collapse
|