1
|
Lubner RJ, Kondamuri NS, Knoll RM, Ward BK, Littlefield PD, Rodgers D, Abdullah KG, Remenschneider AK, Kozin ED. Review of Audiovestibular Symptoms Following Exposure to Acoustic and Electromagnetic Energy Outside Conventional Human Hearing. Front Neurol 2020; 11:234. [PMID: 32411067 PMCID: PMC7199630 DOI: 10.3389/fneur.2020.00234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: We aim to examine the existing literature on, and identify knowledge gaps in, the study of adverse animal and human audiovestibular effects from exposure to acoustic or electromagnetic waves that are outside of conventional human hearing. Design/Setting/Participants: A review was performed, which included searches of relevant MeSH terms using PubMed, Embase, and Scopus. Primary outcomes included documented auditory and/or vestibular signs or symptoms in animals or humans exposed to infrasound, ultrasound, radiofrequency, and magnetic resonance imaging. The references of these articles were then reviewed in order to identify primary sources and literature not captured by electronic search databases. Results: Infrasound and ultrasound acoustic waves have been described in the literature to result in audiovestibular symptomology following exposure. Technology emitting infrasound such as wind turbines and rocket engines have produced isolated reports of vestibular symptoms, including dizziness and nausea and auditory complaints, such as tinnitus following exposure. Occupational exposure to both low frequency and high frequency ultrasound has resulted in reports of wide-ranging audiovestibular symptoms, with less robust evidence of symptomology following modern-day exposure via new technology such as remote controls, automated door openers, and wireless phone chargers. Radiofrequency exposure has been linked to both auditory and vestibular dysfunction in animal models, with additional historical evidence of human audiovestibular disturbance following unquantifiable exposure. While several theories, such as the cavitation theory, have been postulated as a cause for symptomology, there is extremely limited knowledge of the pathophysiology behind the adverse effects that particular exposure frequencies, intensities, and durations have on animals and humans. This has created a knowledge gap in which much of our understanding is derived from retrospective examination of patients who develop symptoms after postulated exposures. Conclusion and Relevance: Evidence for adverse human audiovestibular symptomology following exposure to acoustic waves and electromagnetic energy outside the spectrum of human hearing is largely rooted in case series or small cohort studies. Further research on the pathogenesis of audiovestibular dysfunction following acoustic exposure to these frequencies is critical to understand reported symptoms.
Collapse
Affiliation(s)
- Rory J. Lubner
- Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Neil S. Kondamuri
- Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Renata M. Knoll
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Bryan K. Ward
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Derek Rodgers
- Madigan Army Medical Center, Tacoma, WA, United States
| | - Kalil G. Abdullah
- Department of Neurosurgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Aaron K. Remenschneider
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
- Department of Otolaryngology, University of Massachusetts Medical Center, Worcester, MA, United States
| | - Elliott D. Kozin
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| |
Collapse
|
2
|
Kharlanov AV. Forced acoustic oscillations of biological cell. Bioelectromagnetics 2017; 38:613-617. [PMID: 28836692 DOI: 10.1002/bem.22078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/02/2017] [Indexed: 01/24/2023]
Abstract
This article considers the possibility of excitation of acoustic oscillations in a cell by electromagnetic waves. In this process, not only the frequency but also the length of a wave is of great importance. It is also reported that the pulse signal can be more effective than harmonic signal, and the pulse length is not essential. In accordance with this fact, it is possible to explain the biological effects of electromagnetic waves and to develop new medical electronic devices. Bioelectromagnetics. 38:613-617, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
3
|
Yitzhak NM, Ruppin R, Hareuveny R. Numerical simulation of pressure waves in the cochlea induced by a microwave pulse. Bioelectromagnetics 2014; 35:491-6. [PMID: 25099875 DOI: 10.1002/bem.21869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/25/2014] [Indexed: 11/09/2022]
Abstract
The pressure waves developing at the cochlea by the irradiation of the body with a plane wave microwave pulse are obtained by numerical simulation, employing a two-step finite-difference time-domain (FDTD) algorithm. First, the specific absorption rate (SAR) distribution is obtained by solving the Maxwell equations on a FDTD grid. Second, the temperature rise due to this SAR distribution is used to formulate the thermoelastic equations of motion, which are discretized and solved by the FDTD method. The calculations are performed for anatomically based full body human models, as well as for a head model. The dependence of the pressure amplitude at the cochlea on the frequency, the direction of propagation, and the polarization of the incident electromagnetic radiation, as well as on the pulse width, was investigated.
Collapse
Affiliation(s)
- Nir M Yitzhak
- Radiation Safety Division, Soreq Nuclear Research Center, Yavne, Israel
| | | | | |
Collapse
|
4
|
Collins CM, Wang Z. Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med 2011; 65:1470-82. [PMID: 21381106 PMCID: PMC3078983 DOI: 10.1002/mrm.22845] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/23/2010] [Accepted: 01/05/2011] [Indexed: 11/11/2022]
Abstract
Radiofrequency magnetic fields are critical to nuclear excitation and signal reception in magnetic resonance imaging. The interactions between these fields and human tissues in anatomical geometries results in a variety of effects regarding image integrity and safety of the human subject. In recent decades, numerical methods of calculation have been used increasingly to understand the effects of these interactions and aid in engineering better, faster, and safer equipment and methods. As magnetic resonance imaging techniques and technology have evolved through the years, so to have the requirements for meaningful interpretation of calculation results. Here, we review the basic physics of radiofrequency electromagnetics in magnetic resonance imaging and discuss a variety of ways radiofrequency field calculations are used in magnetic resonance imaging in engineering and safety assurance from simple systems and sequences through advanced methods of development for the future.
Collapse
Affiliation(s)
- Christopher M Collins
- Department of Radiology, The Pennsylvania State University, Hershey, Pennsylvania, USA.
| | | |
Collapse
|