1
|
Tolstykh EI, Vozilova AV, Degteva MO, Akleyev AV. Concept of T-Cell Genus as a Basis for Analysis of the Results of Cytogenetic Studies after Local Bone Marrow Exposure. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Bjørklund G, Pivina L, Dadar M, Semenova Y, Chirumbolo S, Aaseth J. Long-Term Accumulation of Metals in the Skeleton as Related to Osteoporotic Derangements. Curr Med Chem 2021; 27:6837-6848. [PMID: 31333081 DOI: 10.2174/0929867326666190722153305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
The concentrations of metals in the environment are still not within the recommended limits as set by the regulatory authorities in various countries because of human activities. They can enter the food chain and bioaccumulate in soft and hard tissues/organs, often with a long half-life of the metal in the body. Metal exposure has a negative impact on bone health and may result in osteoporosis and increased fracture risk depending on concentration and duration of metal exposure and metal species. Bones are a long-term repository for lead and some other metals, and may approximately contain 90% of the total body burden in birds and mammals. The present review focuses on the most common metals found in contaminated areas (mercury, cadmium, lead, nickel, chromium, iron, and aluminum) and their effects on bone tissue, considering the possibility of the long-term bone accumulation, and also some differences that might exist between different age groups in the whole population.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Lyudmila Pivina
- Department of Internal Medicine, Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Yuliya Semenova
- Department of Internal Medicine, Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy,CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Faculty of Health and Social Science, Inland Norway University of Applied Sciences,
Elverum, Norway
| |
Collapse
|
3
|
Paquet F, Bailey MR, Leggett RW, Etherington G, Blanchardon E, Smith T, Ratia G, Melo D, Fell TP, Berkovski V, Harrison JD. ICRP Publication 141: Occupational Intakes of Radionuclides: Part 4. Ann ICRP 2019; 48:9-501. [PMID: 31850780 DOI: 10.1177/0146645319834139] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The 2007 Recommendations (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979a,b, 1980a, 1981, 1988) and Publication 68 (ICRP, 1994b). In addition, new data are now available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1989a, 1997) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2 and its task groups. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. OIR Part 1 (ICRP, 2015) describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. OIR Part 2 (ICRP, 2016), OIR Part 3 (ICRP, 2017), this current publication, and the final publication in the OIR series (OIR Part 5) provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic models; and data on monitoring techniques for the radioisotopes most commonly encountered in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The online electronic files that accompany the OIR series of publications contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. This fourth publication in the OIR series provides the above data for the following elements: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), actinium (Ac), protactinium (Pa), neptunium (Np), plutonium (Pu), americium (Am), curium (Cm), berkelium (Bk), californium (Cf), einsteinium (Es), and fermium (Fm).
Collapse
|
4
|
Poudel D, Bertelli L, Klumpp JA, Dumit S, Waters TL. Biokinetics of 238Pu oxides: inferences from bioassay data. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:208-248. [PMID: 30523984 DOI: 10.1088/1361-6498/aaf653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The bioassay data collected from several workers involved in 238Pu inhalation incidents have been analysed using the most recent biokinetic models described in the Occupational Intakes of Radionuclides (OIR) series of publications. Although all exposures were thought to be to 238Pu oxides, the observed urinary excretion patterns differed in different inhalation incidents. The urinary excretion from individuals involved in one of the incidents increased steadily with time, peaking around two to three years before decreasing. This pattern is described in Part 4 of the OIR series using the '238PuO2, ceramic' model. This non-monotonic behaviour, explained as being due to fragmentation and dissolution, was not specific to the incident, but observed in other incidents. The urinary excretion data collected from individuals involved in another incident showed dissolution behaviour between Type M and Type S. Finally, the bioassay data from yet another incident showed a pattern that appears to represent behaviour more insoluble than Type S, which is possibly a result of self-heating due to the decay heat from 238Pu. The urinary excretion patterns and corresponding dose coefficients have been calculated and compared.
Collapse
Affiliation(s)
- Deepesh Poudel
- Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM 87544, United States of America
| | | | | | | | | |
Collapse
|
5
|
Gregoratto D, Bailey MR. Estimation of lung absorption parameters for oxides of 238Pu. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:831-853. [PMID: 29714715 DOI: 10.1088/1361-6498/aac19d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Following inhalation of an aerosol of relatively insoluble particles, it is usually found that the fractional dissolution rate of material retained in the lungs decreases with time, and the amount remaining undissolved can be represented simply by a decreasing exponential function with two or more components. A few exceptions are known, in which the dissolution rate increases with time. The most important in the context of radiological protection is probably that of 238Pu dioxide. Several published comprehensive data sets, from animal studies and accidental human exposures, have been analysed using the Human Respiratory Tract Model (HRTM) of the International Commission on Radiological Protection. The HRTM contains a simplified representation of particle dissolution in the respiratory tract, suitable for routine radiological protection purposes. Still, it was found to have sufficient flexibility to represent the measurement data in most of these cases. Although the 238Pu dioxide showed a wide range of behaviour in the different studies, there was good agreement between the absorption behaviour modelled for two studies involving 'ceramic' 238Pu dioxide as used in spacecraft radioisotope thermoelectric generators: a long-term experimental study in dogs and an accidental exposure involving a group of workers.
Collapse
Affiliation(s)
- D Gregoratto
- Centre for Radiation, Chemicals and Environmental Hazards; Public Health England, Chilton OX110RQ, United Kingdom
| | | |
Collapse
|
6
|
Laynez-Bretones F, Lozano-Padilla C. Fifty years since the nuclear accident in Palomares (Almeria). Medical repercussions. Rev Clin Esp 2017. [DOI: 10.1016/j.rceng.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Tazrart A, Bolzinger MA, Coudert S, Lamart S, Miller BW, Angulo JF, Briançon S, Griffiths NM. Skin absorption of actinides: influence of solvents or chelates on skin penetration ex vivo. Int J Radiat Biol 2017; 93:607-616. [DOI: 10.1080/09553002.2017.1293865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anissa Tazrart
- iRCM/DRF/CEA, Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, France
- UMR CNRS 5007, Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d’Automatique et de Génie des Procédés (LAGEP), Université de Lyon, Lyon, France
| | - Marie-Alexandrine Bolzinger
- UMR CNRS 5007, Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d’Automatique et de Génie des Procédés (LAGEP), Université de Lyon, Lyon, France
| | - Sylvie Coudert
- iRCM/DRF/CEA, Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, France
| | - Stephanie Lamart
- iRCM/DRF/CEA, Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, France
| | - Brian W. Miller
- College of Optical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jaime F. Angulo
- iRCM/DRF/CEA, Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, France
| | - Stéphanie Briançon
- UMR CNRS 5007, Laboratoire de Dermopharmacie et Cosmétologie, Laboratoire d’Automatique et de Génie des Procédés (LAGEP), Université de Lyon, Lyon, France
| | - Nina M. Griffiths
- iRCM/DRF/CEA, Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, France
| |
Collapse
|
8
|
Laynez-Bretones F, Lozano-Padilla C. Fifty years since the nuclear accident in Palomares (Almeria). Medical repercussions. Rev Clin Esp 2017; 217:263-266. [PMID: 28237407 DOI: 10.1016/j.rce.2016.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
In January 1966, 2 US military aircraft collided over the skies of Palomares (Almeria). One of them carried thermonuclear bombs, which released plutonium and other radioactive materials upon striking the ground. The most contaminated earth and plants were immediately removed. The Indalo Project was launched to study the effects of nuclear material on the inhabitants and environment of Palomares. A total of 1,077 inhabitants have been monitored since then, and the official version is that the ionising radiation has not been related to any type of disease. However, secrecy has surrounded much of the investigations, and no trustworthy epidemiological study has been conducted in the area. Approximately 500g of plutonium and americium remains in Palomares. Although the risk for the population appears to be low, this radioactive material should be removed as soon as possible.
Collapse
Affiliation(s)
- F Laynez-Bretones
- Servicio de Medicina Interna, Hospital Torrecárdenas, Almería, España.
| | - C Lozano-Padilla
- Unidad de Gestión Clínica Bajo Andarax, Distrito Almería, Almería, España
| |
Collapse
|
9
|
Fattal E, Tsapis N, Phan G. Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents. Adv Drug Deliv Rev 2015; 90:40-54. [PMID: 26144994 DOI: 10.1016/j.addr.2015.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022]
Abstract
The possibility of accidents in the nuclear industry or of nuclear terrorist attacks makes the development of new decontamination strategies crucial. Among radionuclides, actinides such as uranium and plutonium and their different isotopes are considered as the most dangerous contaminants, plutonium displaying mostly a radiological toxicity whereas uranium exhibits mainly a chemical toxicity. Contamination occurs through ingestion, skin or lung exposure with subsequent absorption and distribution of the radionuclides to different tissues where they induce damaging effects. Different chelating agents have been synthesized but their efficacy is limited by their low tissue specificity and high toxicity. For these reasons, several groups have developed smart delivery systems to increase the local concentration of the chelating agent or to improve its biodistribution. The aim of this review is to highlight these strategies.
Collapse
|
10
|
Suslova KG, Sokolova AB, Efimov AV, Miller SC. Accumulation, organ distribution, and excretion kinetics of ²⁴¹Am in Mayak Production Association workers. HEALTH PHYSICS 2013; 104:313-324. [PMID: 23361427 DOI: 10.1097/hp.0b013e31827c783f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Americium-241 (²⁴¹Am) is the second most significant radiation hazard after ²³⁹Pu at some of the Mayak Production Association facilities. This study summarizes current data on the accumulation, distribution, and excretion of americium compared with plutonium in different organs from former Mayak PA workers. Americium and plutonium were measured in autopsy and bioassay samples and correlated with the presence or absence of chronic disease and with biological transportability of the aerosols encountered at different workplaces. The relative accumulation of ²⁴¹Am was found to be increasing in the workers over time. This is likely from ²⁴¹Pu that increases with time in reprocessed fuel and from the increased concentrations of ²⁴¹Am and ²⁴¹Pu in inhaled alpha-active aerosols. While differences were observed in lung retention with exposures to different industrial compounds with different transportabilities (i.e., dioxide and nitrates), there were no significant differences in lung retention between americium and plutonium within each transportability group. In the non-pulmonary organs, the highest ratios of ²⁴¹Am/²⁴¹Am + SPu were observed in the skeleton. The relative ratios of americium in the skeleton versus liver were significantly greater than for plutonium. The relative amounts of americium and plutonium found in the skeleton compared with the liver were even greater in workers with documented chronic liver diseases. Excretion rates of ²⁴¹Am in ‘‘healthy’’ workers were estimated using bioassay and autopsy data. The data suggest that impaired liver function leads to reduced hepatic ²⁴¹Am retention, leading to increased ²⁴¹Am excretion.
Collapse
Affiliation(s)
- Klara G Suslova
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia.
| | | | | | | |
Collapse
|
11
|
Suslova KG, Sokolova AB, Khokhryakov VV, Miller SC. 238Pu: accumulation, tissue distribution, and excretion in Mayak workers after exposure to plutonium aerosols. HEALTH PHYSICS 2012; 102:243-250. [PMID: 22420016 DOI: 10.1097/hp.0b013e3182348ad4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The alpha spectrometry measurements of specific activity of 238Pu and 239Pu in urine from bioassay examinations of 1,013 workers employed at the radiochemical and plutonium production facilities of the Mayak Production Association and in autopsy specimens of lung, liver, and skeleton from 85 former nuclear workers who died between 1974-2009, are summarized.The accumulation fraction of 238Pu in the body and excreta has not changed with time in workers involved in production of weapons-grade plutonium production (e.g., the plutonium production facility and the former radiochemical facility). The accumulation fraction of 238Pu in individuals exposed to plutonium isotopes at the newer Spent Nuclear Fuel Reprocessing Plant ranged from 0.13% up to 27.5% based on the autopsy data. No statistically significant differences between 238Pu and 239Pu in distribution by the main organs of plutonium deposition were found in the Mayak workers. Based on the bioassay data,the fraction of 238Pu activity in urine is on average 38-69% of the total activity of 238Pu and 239Pu, which correlates with the isotopic composition in workplace air sampled at the Spent Nuclear Fuel Reprocessing Plant. In view of the higher specific activity of 238Pu, the contribution of 238Pu to the total internal dose, particularly in the skeleton and liver, might be expected to continue to increase, and continued surveillance is recommended.
Collapse
Affiliation(s)
- Klara G Suslova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, Russia.
| | | | | | | |
Collapse
|