1
|
Živković E, Mitrović-Ajtić O, Subotički T, Ivanović J, Otašević V, Đikić D, Diklić M, Vukotić M, Dragojević T, Stanisavljević D, Antić D, Čokić VP. Thromboinflammatory Biomarkers in Lymphomas: Linking Inflammation to Thrombosis Risk. Int J Mol Sci 2025; 26:2058. [PMID: 40076681 PMCID: PMC11900196 DOI: 10.3390/ijms26052058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Thrombosis is a critical complication in lymphomas, driven by chronic inflammation. To observe this systemic mechanism, we evaluated inflammatory cytokines, neutrophil and monocyte activation, and platelet function in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and Hodgkin lymphoma (HL), with and without thrombosis using ELISA and flow cytometry according to laboratory and clinical data. Interleukin-1β was elevated across lymphomas and inversely correlated with the Khorana score for venous thromboembolism, while increased tumor necrosis factor-alpha (TNF-α) was inversely associated with the International Prognostic Index (IPI) in thrombosis-associated lymphomas. Neutrophil activation was increased in DLBCL, while elevated neutrophil extracellular traps (NETs) biomarkers were inversely consistent with thrombosis and the ThroLy score. NETs were elevated in HL. Classical monocytes were increased in all lymphoma subtypes, with intermediate and tissue factor (TF)-carrying monocytes elevated in DLBCL and HL. Platelet activation was pronounced, with platelet-monocyte aggregates and platelet-associated TF elevated in DLBCL and FL but not HL. P-selectin was increased in lymphomas with thrombosis, aligned with Khorana and ThroLy scores, and reflected clinical stage while inversely correlating with IPI in non-thrombotic lymphomas. These findings highlight distinct thromboinflammatory mechanisms across lymphoma subtypes, providing insights into biomarkers for thrombosis risk and therapeutic targets in lymphoma management.
Collapse
Affiliation(s)
- Emilija Živković
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Olivera Mitrović-Ajtić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Tijana Subotički
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Jelena Ivanović
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (J.I.); (D.A.)
| | | | - Dragoslava Đikić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Miloš Diklić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Milica Vukotić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Teodora Dragojević
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| | - Dejana Stanisavljević
- Institute for Medical Statistics and Informatics, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Darko Antić
- Lymphoma Center, Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (J.I.); (D.A.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vladan P. Čokić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (E.Ž.); (O.M.-A.); (T.S.); (D.Đ.); (M.D.); (M.V.); (T.D.)
| |
Collapse
|
2
|
Li J, Zhao H, Yang J, Wang M, Cao Z, Wang Y, Gu Z. The role and mechanism of extracellular traps in chronic rhinosinusitis. Biomed Pharmacother 2024; 181:117655. [PMID: 39486368 DOI: 10.1016/j.biopha.2024.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is a common inflammatory disease of the nose that affects millions of individuals worldwide. Recent research has introduced the concept of an immunologic endotype based on the pathological characteristics of CRS and the types of inflammatory cell infiltration. This endotype concept is conducive to understanding CRS pathology and guiding further targeted therapy. Eosinophils and neutrophils infiltrate different proportions in different CRS endotypes and release extracellular traps (ETs) as a response to the extracellular immune response. The mechanisms of formation and biological roles of ETs are complex. ETs can trap extracellular microorganisms and limit the range of inflammation to some extent; however, excessive and long-term ETs may be related to disease severity. This review summarises and explores the mechanism of ETs and the advances in CRS research and proposes new insights into the interaction between ETs and programmed cell death (including autophagy, pyroptosis, and necroptosis) in CRS, providing new ideas for the targeted therapy of CRS.
Collapse
Affiliation(s)
- Jiani Li
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Yunxiu Wang
- Department of Clinical Trial Ward, Clinical Trial and Conversion Center, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
3
|
Benavent N, Cañete A, Argilés B, Juan-Ribelles A, Bonanad S, Oto J, Medina P. Delving into the clinical impact of NETs in pediatric cancer. Pediatr Res 2024:10.1038/s41390-024-03437-4. [PMID: 39095576 DOI: 10.1038/s41390-024-03437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Pediatric cancer, a complex and heterogeneous group of diseases, continues to challenge medical research and treatment strategies. Despite advances in precision medicine and immunotherapy, certain aggressive subtypes of pediatric cancer are resistant to conventional therapies, requiring further exploration of potential therapeutic targets. Neutrophil extracellular traps (NETs), net-like structures released by neutrophils, have emerged as a potential player in the pediatric cancer landscape. However, our understanding of their role in pediatric oncology remains limited. This systematic review examines the current state of the NETs literature in pediatric cancer, focusing on the most frequent subtypes. The review reveals the scarcity of research in this area, highlighting the need for further investigation. The few studies available suggest that NETs may influence infection risk, treatment resistance and prognosis in certain pediatric malignancies. Although the field is still in its infancy, it holds great promise for advancing our understanding of pediatric cancer biology and potential therapeutic pathways. IMPACT: This review identifies a significant gap in research on neutrophil extracellular traps (NETs) in pediatric cancer. It provides a summary of existing studies and their promising findings and potential, as well as a comprehensive overview of current research on NETs in certain tumor types. It also emphasizes the lack of specific studies in pediatric cancer. The review encourages the prioritization of NET research in pediatric oncology, with the aim of improving prognosis and developing new treatments through increased understanding and targeted studies.
Collapse
Affiliation(s)
- Nuria Benavent
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.
| | - Adela Cañete
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Bienvenida Argilés
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Antonio Juan-Ribelles
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Santiago Bonanad
- Thrombosis and Haemostasis Unit, Hematology Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
4
|
Xu W, Tian F, Tai X, Song G, Liu Y, Fan L, Weng X, Yang E, Wang M, Bornhäuser M, Zhang C, Lock RB, Wong JWH, Wang J, Jing D, Mi JQ. ETV6::ACSL6 translocation-driven super-enhancer activation leads to eosinophilia in acute lymphoblastic leukemia through IL-3 overexpression. Haematologica 2024; 109:2445-2458. [PMID: 38356460 PMCID: PMC11290521 DOI: 10.3324/haematol.2023.284121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
ETV6::ACSL6 represents a rare genetic aberration in hematopoietic neoplasms and is often associated with severe eosinophilia, which confers an unfavorable prognosis requiring additional anti-inflammatory treatment. However, since the translocation is unlikely to produce a fusion protein, the mechanism of ETV6::ACSL6 action remains unclear. Here, we performed multi-omics analyses of primary leukemia cells and patient-derived xenografts from an acute lymphoblastic leukemia (ALL) patient with ETV6::ACSL6 translocation. We identified a super-enhancer located within the ETV6 gene locus, and revealed translocation and activation of the super-enhancer associated with the ETV6::ACSL6 fusion. The translocated super-enhancer exhibited intense interactions with genomic regions adjacent to and distal from the breakpoint at chromosomes 5 and 12, including genes coding inflammatory factors such as IL-3. This led to modulations in DNA methylation, histone modifications, and chromatin structures, triggering transcription of inflammatory factors leading to eosinophilia. Furthermore, the bromodomain and extraterminal domain (BET) inhibitor synergized with standard-of-care drugs for ALL, effectively reducing IL-3 expression and inhibiting ETV6::ACSL6 ALL growth in vitro and in vivo. Overall, our study revealed for the first time a cis-regulatory mechanism of super-enhancer translocation in ETV6::ACSL6ALL, leading to an ALL-accompanying clinical syndrome. These findings may stimulate novel treatment approaches for this challenging ALL subtype.
Collapse
Affiliation(s)
- Wenqian Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Feng Tian
- Hebei Key Laboratory of Medical Data Science, Institute of Biomedical Informatics, School of Medicine, Hebei University of Engineering, Handan, Hebei Province, 056038
| | - Xiaolu Tai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Gaoxian Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Yuanfang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Liquan Fan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Xiangqin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Eunjeong Yang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Meng Wang
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism and MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai.
| | - Martin Bornhäuser
- Medical Clinic I, University Hospital Carl Gustav Carus, TU Dresden, Dresden
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine and Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW
| | - Jason W H Wong
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025.
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025.
| |
Collapse
|
5
|
Liu R, Zhang J, Rodrigues Lima F, Zeng J, Nian Q. Targeting neutrophil extracellular traps: A novel strategy in hematologic malignancies. Biomed Pharmacother 2024; 173:116334. [PMID: 38422658 DOI: 10.1016/j.biopha.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have emerged as a critical factor in malignant hematologic disease pathogenesis. These structures, comprising DNA, histones, and cytoplasmic proteins, were initially recognized for their role in immune defense against microbial threats. Growing evidence suggests that NETs contribute to malignant cell progression and dissemination, representing a double-edged sword. However, there is a paucity of reports on its involvement in hematological disorders. A comprehensive understanding of the intricate relationship between malignant cells and NETs is necessary to explore effective therapeutic strategies. This review highlights NET formation and mechanisms underlying disease pathogenesis. Moreover, we discuss recent advancements in targeted inhibitor development for selective NET disruption, empowering precise design and efficacious therapeutic interventions for malignant hematologic diseases.
Collapse
Affiliation(s)
- Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing 400000, China
| | - Jin Zhang
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1stRing Rd, Qingyang District, Chengdu, Sichuan 610072, China
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 2-16 Rue Theroigne deMericourt, Paris 75013, France
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, No.37 Shierqiaolu, Chengdu, Sichuan 610000, China.
| | - Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1stRing Rd, Qingyang District, Chengdu, Sichuan 610072, China.
| |
Collapse
|
6
|
Rodrigues WF, Miguel CB, de Abreu MCM, Neto JM, Oliveira CJF. Potential Associations between Vascular Biology and Hodgkin's Lymphoma: An Overview. Cancers (Basel) 2023; 15:5299. [PMID: 37958472 PMCID: PMC10649902 DOI: 10.3390/cancers15215299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Hodgkin's lymphoma (HL) is a lymphatic neoplasm typically found in the cervical lymph nodes. The disease is multifactorial, and in recent years, the relationships between various vascular molecules have been explored in the field of vascular biology. The connection between vascular biology and HL is intricate and the roles of several pathways remain unclear. This review summarizes the cellular and molecular relationships between vascular biology and HL. Proteins associated with various functions in vascular biology, including cytokines (TNF-α, IL-1, IL-13, and IL-21), chemokines (CXCL10, CXCL12, and CCL21), adhesion molecules (ELAM-1/VCAM-1), and growth factors (BDNF/NT-3, platelet-derived growth factor receptor-α), have been linked to tumor activity. Notable tumor activities include the induction of paracrine activation of NF-kB-dependent pathways, upregulation of adhesion molecule regulation, genome amplification, and effective loss of antigen presentation mediated by MHC-II. Preclinical study models, primarily those using cell culture, have been optimized for HL. Animal models, particularly mice, are also used as alternatives to complex biological systems, with studies primarily focusing on the physiopathogenic evaluation of the disease. These biomolecules warrant further study because they may shed light on obscure pathways and serve as targets for prevention and/or treatment interventions.
Collapse
Affiliation(s)
- Wellington Francisco Rodrigues
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | - Camila Botelho Miguel
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | | | - Jamil Miguel Neto
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | - Carlo José Freire Oliveira
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
| |
Collapse
|
7
|
Yan M, Gu Y, Sun H, Ge Q. Neutrophil extracellular traps in tumor progression and immunotherapy. Front Immunol 2023; 14:1135086. [PMID: 36993957 PMCID: PMC10040667 DOI: 10.3389/fimmu.2023.1135086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Tumor immunity is a growing field of research that involves immune cells within the tumor microenvironment. Neutrophil extracellular traps (NETs) are neutrophil-derived extracellular web-like chromatin structures that are composed of histones and granule proteins. Initially discovered as the predominant host defense against pathogens, NETs have attracted increasing attention due to they have also been tightly associated with tumor. Excessive NET formation has been linked to increased tumor growth, metastasis, and drug resistance. Moreover, through direct and/or indirect effects on immune cells, an abnormal increase in NETs benefits immune exclusion and inhibits T-cell mediated antitumor immune responses. In this review, we summarize the recent but rapid progress in understanding the pivotal roles of NETs in tumor and anti-tumor immunity, highlighting the most relevant challenges in the field. We believe that NETs may be a promising therapeutic target for tumor immunotherapy.
Collapse
Affiliation(s)
- Meina Yan
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- *Correspondence: Meina Yan, ;
| | - Yifeng Gu
- Department of Laboratory Medicine, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Hongxia Sun
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qinghong Ge
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Zhao J, Jin J. Neutrophil extracellular traps: New players in cancer research. Front Immunol 2022; 13:937565. [PMID: 36059520 PMCID: PMC9437524 DOI: 10.3389/fimmu.2022.937565] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
NETs are chromatin-derived webs extruded from neutrophils as a result of either infection or sterile stimulation using chemicals, cytokines, or microbes. In addition to the classical role that NETs play in innate immunity against infection and injuries, NETs have been implicated extensively in cancer progression, metastatic dissemination, and therapy resistance. The purpose of this review is to describe recent investigations into NETs and the roles they play in tumor biology and to explore their potential as therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of General Surgery, Changsha Hospital Affiliated to Hunan Normal University/The Fourth Hospital of Changsha, Changsha, China
- *Correspondence: Junjie Zhao, ; Jiaqi Jin,
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Junjie Zhao, ; Jiaqi Jin,
| |
Collapse
|
9
|
Inal JM, Hristova M, Lange S. A Pilot Study on Peptidylarginine Deiminases and Protein Deimination in Animal Cancers across Vertebrate Species. Int J Mol Sci 2022; 23:ijms23158697. [PMID: 35955829 PMCID: PMC9368843 DOI: 10.3390/ijms23158697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
PADs are a group of calcium-dependent enzymes that play key roles in inflammatory pathologies and have diverse roles in cancers. PADs cause irreversible post-translational modification of arginine to citrulline, leading to changes in protein function in different cellular compartments. PAD isozyme diversity differs throughout phylogeny in chordates, with five PAD isozymes in mammals, three in birds, and one in fish. While the roles for PADs in various human cancers are mounting (both in regards to cancer progression and epigenetic regulation), investigations into animal cancers are scarce. The current pilot-study therefore aimed at assessing PAD isozymes in a range of animal cancers across the phylogeny tree. In addition, the tissue samples were assessed for total protein deimination and histone H3 deimination (CitH3), which is strongly associated with human cancers and also indicative of gene regulatory changes and neutrophil extracellular trap formation (NETosis). Cancers were selected from a range of vertebrate species: horse, cow, reindeer, sheep, pig, dog, cat, rabbit, mink, hamster, parrot, and duck. The cancers chosen included lymphoma, kidney, lung, testicular, neuroendocrine, anaplastic, papilloma, and granulosa cell tumour. Immunohistochemical analysis revealed that CitH3 was strongly detected in all of the cancers assessed, while pan-deimination detection was overall low. Both PAD2 and PAD3 were the most predominantly expressed PADs across all of the cancers assessed, while PAD1, PAD4, and PAD6 were overall expressed at lower, albeit varying, levels. The findings from this pilot study provide novel insights into PAD-mediated roles in different cancers across a range of vertebrate species and may aid in the understanding of cancer heterogeneity and cancer evolution.
Collapse
Affiliation(s)
- Jameel M. Inal
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Neonatology, UCL Institute for Women’s Health, London WC1E 6HU, UK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000 (ext. 64832)
| |
Collapse
|
10
|
Jankowska E, Bartoszuk I, Lewandowska K, Dybowska M, Opoka L, Tomkowski W, Szturmowicz M. Acute Eosinophilic Pneumonia Complicated with Venous Thromboembolic Disease—Diagnostic and Therapeutic Considerations. Diagnostics (Basel) 2022; 12:diagnostics12061425. [PMID: 35741235 PMCID: PMC9221981 DOI: 10.3390/diagnostics12061425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Acute Eosinophilic Pneumonia (AEP) is a rare idiopathic disease caused by an accumulation of eosinophils in the pulmonary alveoli and interstitial tissue of the lungs. The onset of symptoms is acute; some patients develop respiratory failure. The diagnosis is based on clinical symptoms, diffuse interstitial infiltrates in the lungs on imaging studies, and eosinophilia exceeding 25% on bronchoalveolar lavage or pleural fluid smear. Smokers are primarily at increased risk for the disease. We present a case of venous thromboembolic disease (VTE) that developed in the course of AEP in a previously healthy male smoker. Complete remission of the disease was achieved with anticoagulation therapy combined with a low dose of steroids. Surprisingly, further diagnostics revealed the presence of thrombophilia: antithrombin (AT) deficiency and increased homocysteine level. According to our knowledge, this is the first case of VTE diagnosed in the course of AEP combined with thrombophilia.
Collapse
Affiliation(s)
- Ewa Jankowska
- 1st Department of Lung Diseases, National Research Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (E.J.); (I.B.); (M.D.); (W.T.); (M.S.)
| | - Iwona Bartoszuk
- 1st Department of Lung Diseases, National Research Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (E.J.); (I.B.); (M.D.); (W.T.); (M.S.)
| | - Katarzyna Lewandowska
- 1st Department of Lung Diseases, National Research Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (E.J.); (I.B.); (M.D.); (W.T.); (M.S.)
- Correspondence: ; Tel.: +48-692-682-078
| | - Małgorzata Dybowska
- 1st Department of Lung Diseases, National Research Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (E.J.); (I.B.); (M.D.); (W.T.); (M.S.)
| | - Lucyna Opoka
- Department of Radiology, National Research Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Witold Tomkowski
- 1st Department of Lung Diseases, National Research Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (E.J.); (I.B.); (M.D.); (W.T.); (M.S.)
| | - Monika Szturmowicz
- 1st Department of Lung Diseases, National Research Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (E.J.); (I.B.); (M.D.); (W.T.); (M.S.)
| |
Collapse
|
11
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|