1
|
Gebing P, Loizou S, Hänsch S, Schliehe-Diecks J, Spory L, Stachura P, Jepsen VH, Vogt M, Pandyra AA, Wang H, Zhuang Z, Zimmermann J, Schrappe M, Cario G, Alsadeq A, Schewe DM, Borkhardt A, Lenk L, Fischer U, Bhatia S. A brain organoid/ALL coculture model reveals the AP-1 pathway as critically associated with CNS involvement of BCP-ALL. Blood Adv 2024; 8:4997-5011. [PMID: 39008716 PMCID: PMC11465051 DOI: 10.1182/bloodadvances.2023011145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
ABSTRACT Central nervous system (CNS) involvement remains a clinical hurdle in treating childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The disease mechanisms of CNS leukemia are primarily investigated using 2-dimensional cell culture and mouse models. Given the variations in cellular identity and architecture between the human and murine CNS, it becomes imperative to seek complementary models to study CNS leukemia. Here, we present a first-of-its-kind 3-dimensional coculture model combining human brain organoids and BCP-ALL cells. We noticed significantly higher engraftment of BCP-ALL cell lines and patient-derived xenograft (PDX) cells in cerebral organoids than non-ALL cells. To validate translatability between organoid coculture and in vivo murine models, we confirmed that targeting CNS leukemia-relevant pathways such as CD79a/Igα or C-X-C motif chemokine receptor 4-stromal cell-derived factor 1 reduced the invasion of BCP-ALL cells into organoids. RNA sequencing and functional validations of organoid-invading leukemia cells compared with the noninvaded fraction revealed significant upregulation of activator protein 1 (AP-1) transcription factor-complex members in organoid-invading cells. Moreover, we detected a significant enrichment of AP-1 pathway genes in PDX ALL cells recovered from the CNS compared with spleen blasts of mice that had received transplantation with TCF3::PBX1+ PDX cells, substantiating the role of AP-1 signaling in CNS disease. Accordingly, we found significantly higher levels of the AP-1 gene, jun proto-oncogene, in patients initially diagnosed as CNS-positive BCP-ALL compared with CNS-negative cases as well as CNS-relapse vs non-CNS-relapse cases in a cohort of 100 patients with BCP-ALL. Our results suggest CNS organoids as a novel model to investigate CNS involvement and identify the AP-1 pathway as a critical driver of CNS disease in BCP-ALL.
Collapse
Affiliation(s)
- Philip Gebing
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanos Loizou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lea Spory
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Pawel Stachura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vera H. Jepsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Melina Vogt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A. Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Johannes Zimmermann
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Martin Schrappe
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ameera Alsadeq
- Institute of Immunology, Ulm University Medical Centre, Ulm, Germany
| | - Denis M. Schewe
- Department of Pediatric Hematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium, Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Lennart Lenk
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium, Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium, Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Li F, Tian J, Zhang L, He H, Song D. A multi-omics approach to reveal critical mechanisms of activator protein 1 (AP-1). Biomed Pharmacother 2024; 178:117225. [PMID: 39084078 DOI: 10.1016/j.biopha.2024.117225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
The Activator Protein 1 (AP-1) transcription factor complex plays a pivotal role in the regulation of cancer-related genes, influencing cancer cell proliferation, invasion, migration, angiogenesis, and apoptosis. Composed of multiple subunits, AP-1 has diverse roles across different cancer types and environmental contexts, but its specific mechanisms remain unclear. The advent of multi-omics approaches has shed light on a more comprehensive understanding of AP-1's role and mechanism in gene regulation. This review collates recent genome-wide data on AP-1 and provides an overview of its expression, structure, function, and interaction across different diseases. An examination of these findings can illuminate the intricate nature of AP-1 regulation and its significant involvement in the progression of different diseases. Moreover, we discuss the potential use of AP-1 as a target for individual therapy and explore the various challenges associated with such an approach. Ultimately, this review provides valuable insights into the biology of AP-1 and its potential as a therapeutic target for cancer and disease treatments.
Collapse
Affiliation(s)
- Fei Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China; School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Huan He
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| |
Collapse
|
3
|
Zhu Y, Zhang S, Gu Y, Sun X, Luo C, Zhou J, Li Z, Lin H, Zhang W. PM 2.5 activates IL-17 signaling pathway in human nasal mucosa-derived fibroblasts. Int Immunopharmacol 2024; 128:111484. [PMID: 38199192 DOI: 10.1016/j.intimp.2024.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Fine particulate matter (PM2.5) represents a prevalent environmental pollutant in the atmosphere, capable of exerting deleterious effects on human health. Numerous studies have indicated a correlation between PM2.5 exposure and the development of chronic upper airway inflammatory diseases. The objective of this study was to investigate the impact of PM2.5 on the transcriptome of fibroblasts derived from nasal mucosa. Initially, nasal mucosa-derived fibroblasts were isolated, cultured, and subsequently stimulated with PM2.5 (100 μg/mL) or an equivalent volume of normal culture medium for a duration of 24 h. Following this, total RNA from these cells was extracted, purified, and subjected to sequencing using next-generation RNA sequencing technology. Differentially expressed genes (DEGs) were then identified and utilized for functional enrichment analysis. A protein-protein interaction (PPI) network of DEGs was constructed, and validation of key genes and proteins was carried out using quantitative real-time PCR and ELISA methods. Results revealed 426 DEGs, comprising 276 up-regulated genes and 150 down-regulated genes in nasal mucosa-derived fibroblasts treated with PM2.5 compared to control cells. Functional enrichment analysis indicated that DEGs were predominantly associated with inflammation-related pathways, including the IL-17 signaling pathway. In alignment with this, PPI analysis highlighted that hub genes were primarily involved in the regulation of the IL-17 signaling pathway. Subsequent validation through quantitative real-time PCR and ELISA confirmed significant alterations in the relative expressions of IL-17 signaling pathway-related genes and concentrations of IL-17 signaling pathway related proteins in nasal mucosa-derived fibroblasts treated with PM2.5 compared to control cells. In conclusion, PM2.5 intervention substantially altered the transcriptome of nasal mucosa-derived fibroblasts. Furthermore, PM2.5 has the potential to exacerbate the inflammatory responses of these fibroblasts by modulating the expression of key genes in the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuelong Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|