1
|
Rothfuß C, Baumann T, Donakonda S, Brauchle B, Marcinek A, Urban C, Mergner J, Pedde AM, Hirschberger A, Krupka C, Neumann AS, Hänel G, Merten C, Öllinger R, Hecker JS, Bauer T, Schmid C, Götze KS, Altomonte J, Bücklein V, Jacobs R, Rad R, Dawid C, Simeoni L, Schraven B, Pichlmair A, Subklewe M, Knolle PA, Böttcher JP, Höchst B. Two-layered immune escape in AML is overcome by Fcγ receptor activation and inhibition of PGE2 signaling in NK cells. Blood 2025; 145:1395-1406. [PMID: 39840945 DOI: 10.1182/blood.2024025706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Loss of anticancer natural killer (NK) cell function in patients with acute myeloid leukemia (AML) is associated with fatal disease progression and remains poorly understood. Here, we demonstrate that AML blasts isolated from patients rapidly inhibit NK cell function and escape NK cell-mediated killing. Transcriptome analysis of NK cells exposed to AML blasts revealed increased CREM expression and transcriptional activity, indicating enhanced cyclic adenosine monophosphate (cAMP) signaling, confirmed by uniform production of the cAMP-inducing prostanoid prostaglandin E2 (PGE2) by all AML-blast isolates from patients. Phosphoproteome analysis disclosed that PGE2 induced a blockade of lymphocyte-specific protein tyrosine kinase (LCK)-extracellular signal-regulated kinase signaling that is crucial for NK cell activation, indicating a 2-layered escape of AML blasts with low expression of NK cell-activating ligands and inhibition of NK cell signaling. To evaluate the therapeutic potential to target PGE2 inhibition, we combined Fcγ-receptor-mediated activation with the prevention of inhibitory PGE2 signaling. This rescued NK cell function and restored the killing of AML blasts. Thus, we identify the PGE2-LCK signaling axis as the key barrier for NK cell activation in 2-layered immune escape of AML blasts that can be targeted for immune therapy to reconstitute anticancer NK cell immunity in patients with AML.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Dinoprostone/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Signal Transduction
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Tumor Escape/immunology
- Male
- Female
- Lymphocyte Activation/immunology
Collapse
Affiliation(s)
- Charlotte Rothfuß
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tobias Baumann
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sainitin Donakonda
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Bettina Brauchle
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anetta Marcinek
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Urban
- Institute of Virology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Munich, Germany
| | - Anna-Marie Pedde
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anna Hirschberger
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christina Krupka
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne-Sophie Neumann
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gerulf Hänel
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Camilla Merten
- Institut of Molecular and Clinical Immunology, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Judith S Hecker
- Department of Medicine III, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Schmid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Munich, Germany
| | - Katharina S Götze
- Department of Medicine III, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Veit Bücklein
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roland Jacobs
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Corina Dawid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Munich, Germany
| | - Luca Simeoni
- Institut of Molecular and Clinical Immunology, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institut of Molecular and Clinical Immunology, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Marion Subklewe
- Gene Center, Laboratory for Translational Cancer Immunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Molecular Immunology, School of Life Science, Technical University of Munich, Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Experimental Immunology, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Bastian Höchst
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Wang X, Shen W, Yao L, Li C, You H, Guo D. Current status and future prospects of molecular imaging in targeting the tumor immune microenvironment. Front Immunol 2025; 16:1518555. [PMID: 39911388 PMCID: PMC11794535 DOI: 10.3389/fimmu.2025.1518555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Molecular imaging technologies have significantly transformed cancer research and clinical practice, offering valuable tools for visualizing and understanding the complex tumor immune microenvironment. These technologies allow for the non-invasive examination of key components within the tumor immune microenvironment, including immune cells, cytokines, and stromal cells, providing crucial insights into tumor biology and treatment responses. This paper reviews the latest advancements in molecular imaging, with a focus on its applications in assessing interactions within the tumor immune microenvironment. Additionally, the challenges faced by molecular imaging technologies are discussed, such as the need for highly sensitive and specific imaging agents, issues with data integration, and difficulties in clinical translation. The future outlook emphasizes the potential of molecular imaging to enhance personalized cancer treatment through the integration of artificial intelligence and the development of novel imaging probes. Addressing these challenges is essential to fully realizing the potential of molecular imaging in improving cancer diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weifen Shen
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingjun Yao
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Li
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huiming You
- Department of Radiology, First People’s Hospital of Linping District, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Duancheng Guo
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Martino EA, Bruzzese A, Labanca C, Mendicino F, Lucia E, Olivito V, Stanzione G, Zimbo A, Pozzi S, Neri A, Morabito F, Vigna E, Gentile M. Investigational CXCR4 inhibitors in early phase development for the treatment of hematological malignancies. Expert Opin Investig Drugs 2024; 33:915-924. [PMID: 39096094 DOI: 10.1080/13543784.2024.2388567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION CXCR4/CXCL12 axis regulates cell proliferation, survival, and differentiation, as well as the homing and mobilization of hematopoietic stem cells (HSCs) from bone marrow niches to the peripheral blood. Furthermore, CXCR4 and CXCL12 are key mediators of cross-talk between hematological malignancies and their microenvironments. CXCR4 overexpression drives disease progression, boosts tumor cell survival, and promotes chemoresistance, leading to poor prognosis. AREAS COVERED In light of these discoveries, scientific investigations, and clinical trials have underscored the therapeutic promise found in small-molecule antagonists like plerixafor, peptides/peptidomimetics, such as BKT140, monoclonal antibodies like PF-06747143 and ulocuplumab, as well as microRNAs. Their efficacy is evident in reducing tumor burden, inducing apoptosis and sensitizing malignant cells to conventional chemotherapies. This overview delves into the pathogenic role of the CXC4/CXCL12 axis in hematological neoplasms and examines the clinical application of key CXCR4 antagonists. EXPERT OPINION The information collectively emphasizes the potential of CXCR4 antagonists as a therapeutic strategy for hematologic malignancies, showcasing advancements in preclinical and clinical studies. As these therapeutic strategies progress through clinical trials, their potential to reshape the prognosis of hematologic malignancies will become increasingly apparent.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Gaia Stanzione
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Stefano Pozzi
- Ematologia Azienda USL-IRCSS Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Reggio Emilia, EmiliaRomagna, Italy
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
4
|
Sanz-Ortega L, Andersson A, Carlsten M. Harnessing upregulated E-selectin while enhancing SDF-1α sensing redirects infused NK cells to the AML-perturbed bone marrow. Leukemia 2024; 38:579-589. [PMID: 38182818 PMCID: PMC10912028 DOI: 10.1038/s41375-023-02126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024]
Abstract
Increased bone marrow (BM) homing of NK cells is associated with positive outcome in patients with acute myeloid leukemia (AML) treated within adoptive NK cell transfer trials. While most efforts to further improve the efficacy focus on augmenting NK cell persistence and cytotoxicity, few address their ability to home to the tumor. Here, we decipher how AML growth alters the BM niche to impair NK cell infiltration and how insights can be utilized to resolve this issue. We show that AML development gradually impairs the BM homing capacity of infused NK cells, which was tightly linked to loss of SDF-1α in this environment. AML development also triggered up-regulation of E-selectin on BM endothelial cells. Given the poor E-selectin-binding capacity of NK cells, introduction of fucosyltransferase-7 (FUT7) to the NK cells per mRNA transfection resulted in potent E-selectin binding and stronger adhesion to E-selectin+ endothelial cells. Co-introduction of FUT7 and gain-of-function CXCR4 (CXCR4R334X) redirected NK cell homing to the BM of AML-bearing mice nearly to the levels in AML-free mice. This work shows how impaired NK cell homing caused by AML-induced microenvironmental changes can be overcome by genetic engineering. We speculate our insights can help further advance future NK cell immunotherapies.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Andersson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlsten
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|