1
|
Fratangelo R, Lolli F, Scarpino M, Grippo A. Point-of-Care Electroencephalography in Acute Neurological Care: A Narrative Review. Neurol Int 2025; 17:48. [PMID: 40278419 PMCID: PMC12029912 DOI: 10.3390/neurolint17040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Point-of-care electroencephalography (POC-EEG) systems are rapid-access, reduced-montage devices designed to address the limitations of conventional EEG (conv-EEG), enabling faster neurophysiological assessment in acute settings. This review evaluates their clinical impact, diagnostic performance, and feasibility in non-convulsive status epilepticus (NCSE), traumatic brain injury (TBI), stroke, and delirium. A comprehensive search of Medline, Scopus, and Embase identified 69 studies assessing 15 devices. In suspected NCSE, POC-EEG facilitates rapid seizure detection and prompt diagnosis, making it particularly effective in time-sensitive and resource-limited settings. Its after-hours availability and telemedicine integration ensure continuous coverage. AI-assisted tools enhance interpretability and accessibility, enabling use by non-experts. Despite variability in accuracy, it supports triaging, improving management, treatment decisions and outcomes while reducing hospital stays, transfers, and costs. In TBI, POC-EEG-derived quantitative EEG (qEEG) indices reliably detect structural lesions, support triage, and minimize unnecessary CT scans. They also help assess concussion severity and predict recovery. For strokes, POC-EEG aids triage by detecting large vessel occlusions (LVOs) with high feasibility in hospital and prehospital settings. In delirium, spectral analysis and AI-assisted models enhance diagnostic accuracy, broadening its clinical applications. Although POC-EEG is a promising screening tool, challenges remain in diagnostic variability, technical limitations, and AI optimization, requiring further research.
Collapse
Affiliation(s)
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Maenia Scarpino
- Neurophysiology Unit, Careggi University Hospital, 50134 Florence, Italy; (M.S.); (A.G.)
| | - Antonello Grippo
- Neurophysiology Unit, Careggi University Hospital, 50134 Florence, Italy; (M.S.); (A.G.)
| |
Collapse
|
2
|
Echemendia RJ, Burma JS, Bruce JM, Davis GA, Giza CC, Guskiewicz KM, Naidu D, Black AM, Broglio S, Kemp S, Patricios JS, Putukian M, Zemek R, Arango-Lasprilla JC, Bailey CM, Brett BL, Didehbani N, Gioia G, Herring SA, Howell D, Master CL, Valovich McLeod TC, Meehan WP, Premji Z, Salmon D, van Ierssel J, Bhathela N, Makdissi M, Walton SR, Kissick J, Pardini J, Schneider KJ. Acute evaluation of sport-related concussion and implications for the Sport Concussion Assessment Tool (SCAT6) for adults, adolescents and children: a systematic review. Br J Sports Med 2023; 57:722-735. [PMID: 37316213 DOI: 10.1136/bjsports-2022-106661] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To systematically review the scientific literature regarding the acute assessment of sport-related concussion (SRC) and provide recommendations for improving the Sport Concussion Assessment Tool (SCAT6). DATA SOURCES Systematic searches of seven databases from 2001 to 2022 using key words and controlled vocabulary relevant to concussion, sports, SCAT, and acute evaluation. ELIGIBILITY CRITERIA (1) Original research articles, cohort studies, case-control studies, and case series with a sample of >10; (2) ≥80% SRC; and (3) studies using a screening tool/technology to assess SRC acutely (<7 days), and/or studies containing psychometric/normative data for common tools used to assess SRC. DATA EXTRACTION Separate reviews were conducted involving six subdomains: Cognition, Balance/Postural Stability, Oculomotor/Cervical/Vestibular, Emerging Technologies, and Neurological Examination/Autonomic Dysfunction. Paediatric/Child studies were included in each subdomain. Risk of Bias and study quality were rated by coauthors using a modified SIGN (Scottish Intercollegiate Guidelines Network) tool. RESULTS Out of 12 192 articles screened, 612 were included (189 normative data and 423 SRC assessment studies). Of these, 183 focused on cognition, 126 balance/postural stability, 76 oculomotor/cervical/vestibular, 142 emerging technologies, 13 neurological examination/autonomic dysfunction, and 23 paediatric/child SCAT. The SCAT discriminates between concussed and non-concussed athletes within 72 hours of injury with diminishing utility up to 7 days post injury. Ceiling effects were apparent on the 5-word list learning and concentration subtests. More challenging tests, including the 10-word list, were recommended. Test-retest data revealed limitations in temporal stability. Studies primarily originated in North America with scant data on children. CONCLUSION Support exists for using the SCAT within the acute phase of injury. Maximal utility occurs within the first 72 hours and then diminishes up to 7 days after injury. The SCAT has limited utility as a return to play tool beyond 7 days. Empirical data are limited in pre-adolescents, women, sport type, geographical and culturally diverse populations and para athletes. PROSPERO REGISTRATION NUMBER CRD42020154787.
Collapse
Affiliation(s)
- Ruben J Echemendia
- Concussion Care Clinic, University Orthopedics, State College, Pennsylvania, USA
- University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jared M Bruce
- Biomedical and Health Informatics, University of Missouri - Kansas City, Kansas City, Missouri, USA
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Christopher C Giza
- Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dhiren Naidu
- Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Steven Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Simon Kemp
- Sports Medicine, Rugby Football Union, London, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg-Braamfontein, South Africa
| | | | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Christopher M Bailey
- Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Brett
- Neurosurgery/ Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Gerry Gioia
- Depts of Pediatrics and Psychiatry & Behavioral Sciences, Children's National Health System, Washington, District of Columbia, USA
| | - Stanley A Herring
- Department of Rehabilitation Medicine, Orthopaedics and Sports Medicine, and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - David Howell
- Orthopedics, Sports Medicine Center, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Tamara C Valovich McLeod
- Department of Athletic Training and School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, Arizona, USA
| | - William P Meehan
- Sports Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
- Emergency Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | | | | | - Neil Bhathela
- UCLA Health Steve Tisch BrainSPORT Program, Los Angeles, California, USA
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- La Trobe Sport and Exercise Medicine Research Centre, Melbourne, Victoria, Australia
| | - Samuel R Walton
- Department of Physical Medicine and Rehabilitation, School of Medicine, Richmond, Virginia, USA
| | - James Kissick
- Dept of Family Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamie Pardini
- Departments of Internal Medicine and Neurology, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Tabor JB, Brett BL, Nelson L, Meier T, Penner LC, Mayer AR, Echemendia RJ, McAllister T, Meehan WP, Patricios J, Makdissi M, Bressan S, Davis GA, Premji Z, Schneider KJ, Zetterberg H, McCrea M. Role of biomarkers and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion: a systematic review. Br J Sports Med 2023; 57:789-797. [PMID: 37316184 DOI: 10.1136/bjsports-2022-106680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Determine the role of fluid-based biomarkers, advanced neuroimaging, genetic testing and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion (SRC). DESIGN Systematic review. DATA SOURCES Searches of seven databases from 1 January 2001 through 24 March 2022 using keywords and index terms relevant to concussion, sports and neurobiological recovery. Separate reviews were conducted for studies involving neuroimaging, fluid biomarkers, genetic testing and emerging technologies. A standardised method and data extraction tool was used to document the study design, population, methodology and results. Reviewers also rated the risk of bias and quality of each study. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies were included if they: (1) were published in English; (2) represented original research; (3) involved human research; (4) pertained only to SRC; (5) included data involving neuroimaging (including electrophysiological testing), fluid biomarkers or genetic testing or other advanced technologies used to assess neurobiological recovery after SRC; (6) had a minimum of one data collection point within 6 months post-SRC; and (7) contained a minimum sample size of 10 participants. RESULTS A total of 205 studies met inclusion criteria, including 81 neuroimaging, 50 fluid biomarkers, 5 genetic testing, 73 advanced technologies studies (4 studies overlapped two separate domains). Numerous studies have demonstrated the ability of neuroimaging and fluid-based biomarkers to detect the acute effects of concussion and to track neurobiological recovery after injury. Recent studies have also reported on the diagnostic and prognostic performance of emerging technologies in the assessment of SRC. In sum, the available evidence reinforces the theory that physiological recovery may persist beyond clinical recovery after SRC. The potential role of genetic testing remains unclear based on limited research. CONCLUSIONS Advanced neuroimaging, fluid-based biomarkers, genetic testing and emerging technologies are valuable research tools for the study of SRC, but there is not sufficient evidence to recommend their use in clinical practice. PROSPERO REGISTRATION NUMBER CRD42020164558.
Collapse
Affiliation(s)
- Jason B Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Benjamin L Brett
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lindsay Nelson
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy Meier
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Linden C Penner
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Andrew R Mayer
- The Mind Research Network, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Ruben J Echemendia
- Psychology, University of Missouri Kansas City, Kansas City, Missouri, USA
- Psychological and Neurobehavioral Associates, Inc, State College, PA, USA
| | - Thomas McAllister
- Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - William P Meehan
- Micheli Center for Sports Injury Prevention, Boston Children's Hospital, Boston, Massachusetts, USA
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jon Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand South, Johannesburg, South Africa
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Silvia Bressan
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Molndal, Sweden
| | - Michael McCrea
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Gosset A, Wagman H, Pavel D, Cohen PF, Tarzwell R, de Bruin S, Siow YH, Numerow L, Uszler J, Rossiter-Thornton JF, McLean M, van Lierop M, Waisman Z, Brown S, Mansouri B, Basile VS, Chaudhary N, Mehdiratta M. Using Single-Photon Emission Computerized Tomography on Patients With Positive Quantitative Electroencephalogram to Evaluate Chronic Mild Traumatic Brain Injury With Persistent Symptoms. Front Neurol 2022; 13:704844. [PMID: 35528740 PMCID: PMC9074759 DOI: 10.3389/fneur.2022.704844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Following mild traumatic brain injury (mTBI), also known as concussion, many patients with chronic symptoms (>3 months post injury) receive conventional imaging such as computed tomography (CT) or magnetic resonance imaging (MRI). However, these modalities often do not show changes after mTBI. We studied the benefit of triaging patients with ongoing symptoms >3 months post injury by quantitative electroencephalography (qEEG) and then completing a brain single positron emission computed tomography (SPECT) to aid in diagnosis and early detection of brain changes. Methods We conducted a retrospective case review of 30 outpatients with mTBI. The patients were assessed by a neurologist, consented, and received a qEEG, and if the qEEG was positive, they consented and received a brain SPECT scan. The cases and diagnostic tools were collectively reviewed by a multidisciplinary group of physicians in biweekly team meetings including neurology, nuclear medicine, psychiatry, neuropsychiatry, general practice psychotherapy, neuro-ophthalmology, and chiropractic providers. The team noted the cause of injury, post injury symptoms, relevant past medical history, physical examination findings, and diagnoses, and commented on patients' SPECT scans. We then analyzed the SPECT scans quantitatively using the 3D-SSP software. Results All the patients had cerebral perfusion abnormalities demonstrated by SPECT that were mostly undetectable by conventional imaging (CT/MRI). Perfusion changes were localized primarily in the cerebral cortex, basal ganglia, and cingulate cortex, and correlated with the patients' symptoms and examination findings. Qualitative and quantitative analyses yielded similar results. Most commonly, the patients experienced persistent headache, memory loss, concentration difficulties, depression, and cognitive impairment post mTBI. Because of their symptoms, most of the patients were unable to return to their previous employment and activity level. Conclusion Our findings outline the physical basis of neurological and psychiatric symptoms experienced by patients with mTBI. Increased detection of mTBI can lead to development of improved targeted treatments for mTBI and its various sequelae.
Collapse
Affiliation(s)
- Alexi Gosset
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hayley Wagman
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dan Pavel
- University of Illinois Medical Center, Chicago, IL, United States
| | - Philip Frank Cohen
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert Tarzwell
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Yin Hui Siow
- Southlake Regional Health Centre, Newmarket, ON, Canada
| | - Leonard Numerow
- Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - John Uszler
- Faculty of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Mary McLean
- Private Practice, Toronto, ON, Canada
- The International Society of Applied Neuroimaging (ISAN), Toronto, ON, Canada
| | | | - Zohar Waisman
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen Brown
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Behzad Mansouri
- Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | - Navjot Chaudhary
- University of Illinois Medical Center, Chicago, IL, United States
| | - Manu Mehdiratta
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: Manu Mehdiratta
| |
Collapse
|
5
|
Assessment of Correlation Between Brain Function Index and Three Common Sedation Scales in Intensive Care Unit Patients. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans.119726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: This study aimed to evaluate the correlation of the Brain Function Index (BFI) with three criteria of consciousness (Glasgow, Richmond, and FOUR score) in the intensive care unit. Methods: We enrolled patients aged over 15 years who required no muscle relaxants and had no hearing and visual impairment, mental retardation, mental disorder, hemodynamic instability (MAP < 60 mmHg), and hypoxia (SpO2 < 90%), as well as patients with no brain electrical activity disorders such as epilepsy and focal brain disease, and those who had not undergone anesthesia and surgery for the past 24 hours. Results: All ICU patients were enrolled in the study in the autumn and winter based on inclusion and exclusion criteria (n = 85). During 24 hours, BFI and three clinical criteria of sedation and consciousness including RASS, GCS, and FOUR score were assessed three times with a minimum of four-hour intervals. Among the patients, 45 (52.9%) were males, and 40 (47.1%) were females; 24 (28.2%) patients were under 40 years of age, 13 (15.3%) patients were between 41 and 60 years old, and 48 (56.5%) patients were over 61 years old. There was a significant positive relationship between the BFI score of ICU patients and the score of patient consciousness based on RASS, FOUR score, and GCS. The correlation of BFI with the FOUR score was higher than those with the other two criteria. Conclusions: Objective criteria for assessing the consciousness level such as BFI are sufficiently accurate and can be used instead of clinical criteria to assess the level of consciousness in special wards.
Collapse
|
6
|
Lochner A, Bazzi A, Guyer C, Brackney A. Acute Concussion Assessment and Management in the Emergency Department. CURRENT EMERGENCY AND HOSPITAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40138-021-00236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Jacquin AE, Bazarian JJ, Casa DJ, Elbin RJ, Hotz G, Schnyer DM, Yeargin S, Prichep LS, Covassin T. Concussion assessment potentially aided by use of an objective multimodal concussion index. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211004333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective Prompt, accurate, objective assessment of concussion is crucial as delays can lead to increased short and long-term consequences. The purpose of this study was to derive an objective multimodal concussion index (CI) using EEG at its core, to identify concussion, and to assess change over time throughout recovery. Methods Male and female concussed ( N = 232) and control ( N = 206) subjects 13–25 years were enrolled at 12 US colleges and high schools. Evaluations occurred within 72 h of injury, 5 days post-injury, at return-to-play (RTP), 45 days after RTP (RTP + 45); and included EEG, neurocognitive performance, and standard concussion assessments. Concussed subjects had a witnessed head impact, were removed from play for ≥ 5 days using site guidelines, and were divided into those with RTP < 14 or ≥14 days. Part 1 describes the derivation and efficacy of the machine learning derived classifier as a marker of concussion. Part 2 describes significance of differences in CI between groups at each time point and within each group across time points. Results Sensitivity = 84.9%, specificity = 76.0%, and AUC = 0.89 were obtained on a test Hold-Out group representing 20% of the total dataset. EEG features reflecting connectivity between brain regions contributed most to the CI. CI was stable over time in controls. Significant differences in CI between controls and concussed subjects were found at time of injury, with no significant differences at RTP and RTP + 45. Within the concussed, differences in rate of recovery were seen. Conclusions The CI was shown to have high accuracy as a marker of likelihood of concussion. Stability of CI in controls supports reliable interpretation of CI change in concussed subjects. Objective identification of the presence of concussion and assessment of readiness to return to normal activity can be aided by use of the CI, a rapidly obtained, point of care assessment tool.
Collapse
Affiliation(s)
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester, Rochester, NY, USA
| | - Douglas J Casa
- Department of Kinesiology, Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
| | - Robert J Elbin
- Department of Health, Human Performance and Recreation, Office for Sport Concussion Research, University of Arkansas, Fayetteville, AR, USA
| | - Gillian Hotz
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David M Schnyer
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Susan Yeargin
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | | | - Tracey Covassin
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Abstract
Subconcussive head injury represents a pathophysiology that spans the expertise of both clinical neurology and biomechanical engineering. From both viewpoints, the terms injury and damage, presented without qualifiers, are synonymously taken to mean a tissue alteration that may be recoverable. For clinicians, concussion is evolving from a purely clinical diagnosis to one that requires objective measurement, to be achieved by biomedical engineers. Subconcussive injury is defined as subclinical pathophysiology in which underlying cellular- or tissue-level damage (here, to the brain) is not severe enough to present readily observable symptoms. Our concern is not whether an individual has a (clinically diagnosed) concussion, but rather, how much accumulative damage an individual can tolerate before they will experience long-term deficit(s) in neurological health. This concern leads us to look for the history of damage-inducing events, while evaluating multiple approaches for avoiding injury through reduction or prevention of the associated mechanically induced damage.
Collapse
Affiliation(s)
- Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; .,School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Thomas M Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; .,School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paul S Auerbach
- Department of Emergency Medicine, Stanford University, Palo Alto, California 94304, USA
| |
Collapse
|
9
|
Anesthetic Care for the Post-concussive Patient: There Are More Questions Than Answers. CURRENT ANESTHESIOLOGY REPORTS 2020. [DOI: 10.1007/s40140-020-00365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Jacquin A, Kanakia S, Oberly D, Prichep LS. A multimodal biomarker for concussion identification, prognosis and management. Comput Biol Med 2018; 102:95-103. [DOI: 10.1016/j.compbiomed.2018.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 11/30/2022]
|
11
|
Perrey S, Besson P. Studying brain activity in sports performance: Contributions and issues. PROGRESS IN BRAIN RESEARCH 2018; 240:247-267. [PMID: 30390834 DOI: 10.1016/bs.pbr.2018.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the interactions between brain activity and behavior comprehensively in achieving optimal exercise performance in sports is still lacking. The existent research in this area has been limited by the constraints of sports environments and the robustness of the most suitable non-invasive functional neuroimaging methods (electroencephalography, EEG and functional near-infrared spectroscopy, fNIRS) to motion artifacts and noise. However, recent advances in brain mapping technology should improve the capabilities of the future brain imaging devices to assess and monitor the level of adaptive cognitive-motor performance during exercise in sports environments. The purpose of this position manuscript is to discuss the contributions and issues in behavioral neuroscience related to brain activity measured during exercise and in various sports. A first part aims to give an overview of EEG and fNIRS neuroimaging methods assessing electrophysiological activity and hemodynamic responses of the acute and chronic relation of physical exercise on the human brain. Then, methodological issues, such as the reliability of brain data during physical exertion, key limitations and possible prospects of fNIRS and EEG methods are provided. While the use of such methods in sports environments remains scarce and limited to controlled cycling task, new generation of wearable, whole-scalp EEG and fNIRS technologies could open up a range of new applications in sports sciences for providing neuroimaging-based biomarkers (hemodynamic and/or neural electrical signals) to various types of exercise and innovative training.
Collapse
Affiliation(s)
| | - Pierre Besson
- Euromov-University of Montpellier, Montpellier, France
| |
Collapse
|