1
|
Vanier C, Santhanam P, Rochester N, Carter L, Lim M, Kilani A, Venkatesh S, Azad S, Knoblauch T, Surti T, Brown C, Sanchez JR, Ma L, Parikh S, Germin L, Fazzini E, Snyder TH. Symptom Persistence Relates to Volume and Asymmetry of the Limbic System after Mild Traumatic Brain Injury. J Clin Med 2024; 13:5154. [PMID: 39274367 PMCID: PMC11396354 DOI: 10.3390/jcm13175154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Persistent symptoms have been reported in up to 50% of the 27 million people with mild traumatic brain injuries (mTBI) every year. MRI findings are currently limited by low diagnostic and prognostic sensitivities, constraining the value of imaging in the stratification of patients following mTBI. Limbic system structures are promising brain regions in offering prognostic factors for symptom persistence following mTBI. The objective of this study was to associate volume and symmetry of limbic system structures with the presence and persistence of common symptoms in patients with mTBI. Methods: This study focused on 524 adults (aged 18-82), 58% female, with 82% injured in motor vehicle accidents and 28% reporting loss of consciousness (LOC). Magnetic resonance imaging (MRI) data included a sagittal 3D T1-weighted sequence with 1.2 mm slice thickness, with voxel sizes of 0.93 mm × 0.93 mm × 1.2 mm, obtained a median of 156 days after injury. Symptom diagnosis and persistence were collected retrospectively from patient medical records. Intracranial volume-adjusted regional volumes per side utilizing automated volumetric analysis (NeuroQuant®) were used to calculate total volume, laterality index, and side-independent asymmetry. Covariates included age, sex, LOC, and days from injury. Limbic volumetrics did not relate to symptom presentation, except the (-) association between headache presence and thalamus volume (adjusted odds ratio = 0.51, 95% confidence interval = 0.32, 0.85). Headache, balance problems, anxiety, and depression persistence was (-) associated with thalamus volume (hazard ratio (HR) 1.25 to 1.94). Longer persistence of balance problems was associated with (-) lateral orbitofrontal cortex volume (HR = 1.33) and (+) asymmetry of the hippocampus (HR = 0.27). Persistence of cognitive deficits was associated with (+) asymmetry in the caudal anterior cingulate (HR = 0.67). Depression persistence was associated with (+) asymmetry in the isthmus of the cingulate gyrus (HR = 5.39). Persistence of anxiety was associated with (-) volume of the parahippocampal gyrus (HR = 1.67), orbitofrontal cortex (HR > 1.97), and right-biased laterality of the entorhinal cortex (HR = 0.52). Conclusions: Relative volume and asymmetry of the limbic system structures in patients with mTBI are associated with the persistence of symptoms, particularly anxiety. The conclusions of this study are limited by the absence of a reference group with no mTBI.
Collapse
Affiliation(s)
- Cheryl Vanier
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | | | - Nicholas Rochester
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Medicine, Central Michigan University, Midland, MI 48859, USA
| | | | - Mike Lim
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Amir Kilani
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Shivani Venkatesh
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Sherwin Azad
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Thomas Knoblauch
- Imgen Research Group, Las Vegas, NV 89118, USA
- Department of Interdisciplinary Health Sciences, University of Nevada, Las Vegas, NV 89557, USA
| | - Tapasya Surti
- Department of Neurology, University of Texas Health Science Center, Houston, TX 78701-2982, USA
| | - Colin Brown
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Justin Roy Sanchez
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Leon Ma
- Department of Anesthesiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Shaunaq Parikh
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Leo Germin
- Clinical Neurology Specialists, Las Vegas, NV 89147, USA
| | - Enrico Fazzini
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Travis H Snyder
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
- Department of Radiology, HCA Healthcare, Mountain View Hospital, Las Vegas, NV 89166, USA
- SimonMed Imaging, Las Vegas, NV 89121, USA
| |
Collapse
|
2
|
Tate DF, Wade BSC, Velez CS, Bigler ED, Davenport ND, Dennis EL, Esopenko C, Hinds SR, Kean J, Kennedy E, Kenney K, Mayer AR, Newsome MR, Philippi CL, Pugh MJ, Scheibel RS, Taylor BA, Troyanskaya M, Werner JK, York GE, Walker W, Wilde EA. Persistent MRI Findings Unique to Blast and Repetitive Mild TBI: Analysis of the CENC/LIMBIC Cohort Injury Characteristics. Mil Med 2024; 189:e1938-e1946. [PMID: 38401164 PMCID: PMC11363162 DOI: 10.1093/milmed/usae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/04/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024] Open
Abstract
INTRODUCTION MRI represents one of the clinical tools at the forefront of research efforts aimed at identifying diagnostic and prognostic biomarkers following traumatic brain injury (TBI). Both volumetric and diffusion MRI findings in mild TBI (mTBI) are mixed, making the findings difficult to interpret. As such, additional research is needed to continue to elucidate the relationship between the clinical features of mTBI and quantitative MRI measurements. MATERIAL AND METHODS Volumetric and diffusion imaging data in a sample of 976 veterans and service members from the Chronic Effects of Neurotrauma Consortium and now the Long-Term Impact of Military-Relevant Brain Injury Consortium observational study of the late effects of mTBI in combat with and without a history of mTBI were examined. A series of regression models with link functions appropriate for the model outcome were used to evaluate the relationships among imaging measures and clinical features of mTBI. Each model included acquisition site, participant sex, and age as covariates. Separate regression models were fit for each region of interest where said region was a predictor. RESULTS After controlling for multiple comparisons, no significant main effect was noted for comparisons between veterans and service members with and without a history of mTBI. However, blast-related mTBI were associated with volumetric reductions of several subregions of the corpus callosum compared to non-blast-related mTBI. Several volumetric (i.e., hippocampal subfields, etc.) and diffusion (i.e., corona radiata, superior longitudinal fasciculus, etc.) MRI findings were noted to be associated with an increased number of repetitive mTBIs versus. CONCLUSIONS In deployment-related mTBI, significant findings in this cohort were only observed when considering mTBI sub-groups (blast mechanism and total number/dose). Simply comparing healthy controls and those with a positive mTBI history is likely an oversimplification that may lead to non-significant findings, even in consortium analyses.
Collapse
Affiliation(s)
- David F Tate
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Department of Psychology, Brigham Young University, Provo, UT 84604, USA
| | - Benjamin S C Wade
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carmen S Velez
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
| | - Erin D Bigler
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- Department of Psychology, Brigham Young University, Provo, UT 84604, USA
- Departments of Neuroscience, Brigham Young University, Provo, UT 84604, USA
| | - Nicholas D Davenport
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emily L Dennis
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sidney R Hinds
- Department of Neurology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Jacob Kean
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Eamonn Kennedy
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University, Bethesda, MD 20814, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Andrew R Mayer
- The Mind Research Network, University of New Mexico Health Science Center, Albuquerque, NM 87106, USA
| | - Mary R Newsome
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO 63121, St. Louis
| | - Mary J Pugh
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Randall S Scheibel
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian A Taylor
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Maya Troyanskaya
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - John K Werner
- Department of Neurology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Gerald E York
- Imaging Associates of Alaska, Anchorage, AK 99508, USA
| | - William Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elisabeth A Wilde
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Juárez-Belaúnde A, Orcajo E, Lejarreta S, Davila-Pérez P, León N, Oliviero A. Fatigue in patients with acquired brain damage. Neurologia 2024; 39:178-189. [PMID: 38278413 DOI: 10.1016/j.nrleng.2024.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/22/2021] [Indexed: 01/28/2024] Open
Abstract
Fatigue is a complex, multidimensional syndrome that is prevalent in patients with acquired brain damage and has a negative impact on the neurorehabilitation process. It presents from early stages after the injury, and may persist over time, regardless of whether sequelae have resolved. Fatigue is conditioned by upper neuronal circuits, and is defined as an abnormal perception of overexertion. Its prevalence ranges from 29% to 77% after stroke, from 18% to 75% after traumatic brain injury, and from 47% to 97% after brain tumours. Fatigue is associated with factors including female sex, advanced age, dysfunctional families, history of specific health conditions, functional status (eg, fatigue prior to injury), comorbidities, mood, secondary disability, and the use of certain drugs. Assessment of fatigue is fundamentally based on such scales as the Fatigue Severity Scale (FSS). Advances have recently been made in imaging techniques for its diagnosis, such as in functional MRI. Regarding treatment, no specific pharmacological treatment currently exists; however, positive results have been reported for some conventional neurorehabilitation therapies, such as bright light therapy, neurofeedback, electrical stimulation, and transcranial magnetic stimulation. This review aims to assist neurorehabilitation professionals to recognise modifiable factors associated with fatigue and to describe the treatments available to reduce its negative effect on patients.
Collapse
Affiliation(s)
- A Juárez-Belaúnde
- Fundación Instituto San José Hospital, Área de Neurorrehabilitación y Atención al Daño Cerebral, Madrid, España.
| | - E Orcajo
- Fundación Instituto San José Hospital, Área de Neurorrehabilitación y Atención al Daño Cerebral, Madrid, España; Unidad avanzada de neurorehabilitación, Hospital Los Madroños, Madrid, España
| | - S Lejarreta
- Fundación Instituto San José Hospital, Área de Neurorrehabilitación y Atención al Daño Cerebral, Madrid, España; Consorci Sanitari Alt Penedès-Garraf, Departmento de Neurología, Cataluña, España
| | - P Davila-Pérez
- Unidad avanzada de neurorehabilitación, Hospital Los Madroños, Madrid, España; Hospital Universitario Rey Juan Carlos (HURJC), Departmento de Neurofisiología Clínica, Madrid, España; Health Research Institute - Hospital Universitario Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, España
| | - N León
- Fundación Instituto San José Hospital, Área de Neurorrehabilitación y Atención al Daño Cerebral, Madrid, España; Unidad avanzada de neurorehabilitación, Hospital Los Madroños, Madrid, España
| | - A Oliviero
- Fundación Instituto San José Hospital, Área de Neurorrehabilitación y Atención al Daño Cerebral, Madrid, España; Unidad avanzada de neurorehabilitación, Hospital Los Madroños, Madrid, España; Hospital Nacional para Paraplégicos (SESCAM), Grupo FENNSI, Toledo, España
| |
Collapse
|
4
|
Casamento-Moran A, Mooney RA, Chib VS, Celnik PA. Cerebellar Excitability Regulates Physical Fatigue Perception. J Neurosci 2023; 43:3094-3106. [PMID: 36914263 PMCID: PMC10146467 DOI: 10.1523/jneurosci.1406-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Fatigue is the subjective sensation of weariness, increased sense of effort, or exhaustion and is pervasive in neurologic illnesses. Despite its prevalence, we have a limited understanding of the neurophysiological mechanisms underlying fatigue. The cerebellum, known for its role in motor control and learning, is also involved in perceptual processes. However, the role of the cerebellum in fatigue remains largely unexplored. We performed two experiments to examine whether cerebellar excitability is affected after a fatiguing task and its association with fatigue. Using a crossover design, we assessed cerebellar inhibition (CBI) and perception of fatigue in humans before and after "fatigue" and "control" tasks. Thirty-three participants (16 males, 17 females) performed five isometric pinch trials with their thumb and index finger at 80% maximum voluntary capacity (MVC) until failure (force <40% MVC; fatigue) or at 5% MVC for 30 s (control). We found that reduced CBI after the fatigue task correlated with a milder perception of fatigue. In a follow-up experiment, we investigated the behavioral consequences of reduced CBI after fatigue. We measured CBI, perception of fatigue, and performance during a ballistic goal-directed task before and after the same fatigue and control tasks. We replicated the observation that reduced CBI after the fatigue task correlated with a milder perception of fatigue and found that greater endpoint variability after the fatigue task correlated with reduced CBI. The proportional relation between cerebellar excitability and fatigue indicates a role of the cerebellum in the perception of fatigue, which might come at the expense of motor control.SIGNIFICANCE STATEMENT Fatigue is one of the most common and debilitating symptoms in neurologic, neuropsychiatric, and chronic illnesses. Despite its epidemiological importance, there is a limited understanding of the neurophysiological mechanisms underlying fatigue. In a series of experiments, we demonstrate that decreased cerebellar excitability relates to lesser physical fatigue perception and worse motor control. These results showcase the role of the cerebellum in fatigue regulation and suggest that fatigue- and performance-related processes might compete for cerebellar resources.
Collapse
Affiliation(s)
- Agostina Casamento-Moran
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland 21287
| | - Ronan A Mooney
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland 21287
| | - Vikram S Chib
- Kennedy Krieger Institute, Baltimore, Maryland 21287
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21287
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland 21287
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287
| |
Collapse
|
5
|
Deters JR, Fietsam AC, Gander PE, Boles Ponto LL, Rudroff T. Effect of Post-COVID-19 on Brain Volume and Glucose Metabolism: Influence of Time Since Infection and Fatigue Status. Brain Sci 2023; 13:brainsci13040675. [PMID: 37190640 DOI: 10.3390/brainsci13040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Post-COVID-19 syndrome (PCS) fatigue is typically most severe <6 months post-infection. Combining magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging with the glucose analog [18F]-Fluorodeoxyglucose (FDG) provides a comprehensive overview of the effects of PCS on regional brain volumes and metabolism, respectively. The primary purpose of this exploratory study was to investigate differences in MRI/PET outcomes between people < 6 months (N = 18, 11 female) and > 6 months (N = 15, 6 female) after COVID-19. The secondary purpose was to assess if any differences in MRI/PET outcomes were associated with fatigue symptoms. Subjects > 6 months showed smaller volumes in the putamen, pallidum, and thalamus compared to subjects < 6 months. In subjects > 6 months, fatigued subjects had smaller volumes in frontal areas compared to non-fatigued subjects. Moreover, worse fatigue was associated with smaller volumes in several frontal areas in subjects > 6 months. The results revealed no brain metabolism differences between subjects > 6 and < 6 months. However, both groups exhibited both regional hypo- and hypermetabolism compared to a normative database. These results suggest that PCS may alter regional brain volumes but not metabolism in people > 6 months, particularly those experiencing fatigue symptoms.
Collapse
Affiliation(s)
- Justin R Deters
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA
| | - Alexandra C Fietsam
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA
| | - Phillip E Gander
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Laura L Boles Ponto
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
7
|
McKenna MC, Lope J, Bede P, Tan EL. Thalamic pathology in frontotemporal dementia: Predilection for specific nuclei, phenotype-specific signatures, clinical correlates, and practical relevance. Brain Behav 2023; 13:e2881. [PMID: 36609810 PMCID: PMC9927864 DOI: 10.1002/brb3.2881] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) phenotypes are classically associated with distinctive cortical atrophy patterns and regional hypometabolism. However, the spectrum of cognitive and behavioral manifestations in FTD arises from multisynaptic network dysfunction. The thalamus is a key hub of several corticobasal and corticocortical circuits. The main circuits relayed via the thalamic nuclei include the dorsolateral prefrontal circuit, the anterior cingulate circuit, and the orbitofrontal circuit. METHODS In this paper, we have reviewed evidence for thalamic pathology in FTD based on radiological and postmortem studies. Original research papers were systematically reviewed for preferential involvement of specific thalamic regions, for phenotype-associated thalamic disease burden patterns, characteristic longitudinal changes, and genotype-associated thalamic signatures. Moreover, evidence for presymptomatic thalamic pathology was also reviewed. Identified papers were systematically scrutinized for imaging methods, cohort sizes, clinical profiles, clinicoradiological associations, and main anatomical findings. The findings of individual research papers were amalgamated for consensus observations and their study designs further evaluated for stereotyped shortcomings. Based on the limitations of existing studies and conflicting reports in low-incidence FTD variants, we sought to outline future research directions and pressing research priorities. RESULTS FTD is associated with focal thalamic degeneration. Phenotype-specific thalamic traits mirror established cortical vulnerability patterns. Thalamic nuclei mediating behavioral and language functions are preferentially involved. Given the compelling evidence for considerable thalamic disease burden early in the course of most FTD subtypes, we also reflect on the practical relevance, diagnostic role, prognostic significance, and monitoring potential of thalamic metrics in FTD. CONCLUSIONS Cardinal manifestations of FTD phenotypes are likely to stem from thalamocortical circuitry dysfunction and are not exclusively driven by focal cortical changes.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Bruijel J, Quaedflieg CWEM, Otto T, van de Ven V, Stapert SZ, van Heugten C, Vermeeren A. Task-induced subjective fatigue and resting-state striatal connectivity following traumatic brain injury. Neuroimage Clin 2022; 33:102936. [PMID: 35007852 PMCID: PMC8749448 DOI: 10.1016/j.nicl.2022.102936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
Abstract
Fatigue is a very frequent and disabling symptom in traumatic brain injury (TBI). Effects of task-induced fatigue on resting-state functional connectivity (rsFC). Striatal rsFC relates differently to subjective fatigue in TBI compared to controls. Default mode network rsFC relates similar to subjective fatigue in TBI and controls.
Background People with traumatic brain injury (TBI) often experience fatigue, but an understanding of the neural underpinnings of fatigue following TBI is still lacking. This study used resting-state functional magnetic resonance imaging (rs-fMRI) to examine associations between functional connectivity (FC) changes and task-induced changes in subjective fatigue in people with moderate-severe TBI. Methods Sixteen people with moderate-severe TBI and 17 matched healthy controls (HC) performed an adaptive N-back task (working memory task) to induce cognitive fatigue. Before and after the task they rated their state fatigue level and underwent rs-fMRI. Seed-to-voxel analyses with seeds in areas involved in cognitive fatigue, namely the striatum and default mode network (DMN) including, medial prefrontal cortex and posterior cingulate cortex, were performed. Results The adaptive N-back task was effective in inducing fatigue in both groups. Subjective task-induced fatigue was positively associated with FC between striatum and precuneus in people with TBI, while there was a negative association in HC. In contrast, subjective task-induced fatigue was negatively associated with FC between striatum and cerebellum in the TBI group, while there was no association in HC. Similar associations between task-induced subjective fatigue and DMN FC were found across the groups. Conclusions Our results suggest that the subjective experience of fatigue was linked to DMN connectivity in both groups and was differently associated with striatal connectivity in people with moderate-severe TBI compared to HC. Defining fatigue-induced neuronal network changes is pertinent to the development of treatments that target abnormal neuronal activity after TBI.
Collapse
Affiliation(s)
- J Bruijel
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands.
| | - C W E M Quaedflieg
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - T Otto
- Dept of Work and Social Psychology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - V van de Ven
- Dept of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - S Z Stapert
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands; Dept of Medical Psychology, Zuyderland Medical Centre, Sittard-Geleen, the Netherlands
| | - C van Heugten
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands; School for Mental Health and Neuroscience, Dept of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - A Vermeeren
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
9
|
Acute Effects of Verbal Encouragement and Listening to Preferred Music on Maximal Repeated Change-of-Direction Performance in Adolescent Elite Basketball Players—Preliminary Report. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Verbal encouragement (VE) and listening to preferred music (PM) are considered effective ergogenic methods in strength and conditioning, but studies examining the effectiveness of these two methods simultaneously are lacking. This study analyzed the influence of PM and VE on repeated change-of-direction performance (R-CoD) in elite young basketball players. On alternate days, 18 elite young basketball players (17.2 ± 0.61 years; 189.8 ± 7 cm; 71.6 ± 6.7 kg; body fat: 12.3 ± 2.5%) were assessed on R-CoD under three randomized conditions: team-selected PM, VE, and control condition. Total time (TT), peak time (PT), and fatigue index were registered and compared across conditions. Significant differences across conditions were evidenced for TT and PT (F-test = 6.96 and 4.15, p < 0.05; large effect size), with better results in VE and PM than in the control condition and no significant differences between VE and PM. No correlations were evidenced between changes that occurred as a result of VE and those which occurred as a result of PM, indicating individual responsiveness of the players to VE and PM. The results evidenced positive acute effects of VE and PM on R-CoD performance, indicating the usefulness of these training methods in the conditioning of youth basketball players. Future studies should evaluate the applicability of VE and PM in the training of other conditioning capacities and the individual responsiveness of players toward VE and PM.
Collapse
|
10
|
Juárez-Belaúnde A, Orcajo E, Lejarreta S, Davila-Pérez P, León N, Oliviero A. Fatigue in patients with acquired brain damage. Neurologia 2021:S0213-4853(21)00111-0. [PMID: 34538507 DOI: 10.1016/j.nrl.2021.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/22/2021] [Indexed: 01/05/2023] Open
Abstract
Fatigue is a complex, multidimensional syndrome that is prevalent in patients with acquired brain damage and has a negative impact on the neurorehabilitation process. It presents from early stages after the injury, and may persist over time, regardless of whether sequelae have resolved. Fatigue is conditioned by upper neuronal circuits, and is defined as an abnormal perception of overexertion. Its prevalence ranges from 29% to 77% after stroke, from 18% to 75% after traumatic brain injury, and from 47% to 97% after brain tumours. Fatigue is associated with factors including female sex, advanced age, dysfunctional families, history of specific health conditions, functional status (eg, fatigue prior to injury), comorbidities, mood, secondary disability, and the use of certain drugs. Assessment of fatigue is fundamentally based on such scales as the Fatigue Severity Scale (FSS). Advances have recently been made in imaging techniques for its diagnosis, such as in functional MRI. Regarding treatment, no specific pharmacological treatment currently exists; however, positive results have been reported for some conventional neurorehabilitation therapies, such as bright light therapy, neurofeedback, electrical stimulation, and transcranial magnetic stimulation. This review aims to assist neurorehabilitation professionals to recognise modifiable factors associated with fatigue and to describe the treatments available to reduce its negative effect on patients.
Collapse
Affiliation(s)
- A Juárez-Belaúnde
- Unidad Avanzada de Neurorrehabilitación, Hospital Los Madroños, Madrid, España.
| | - E Orcajo
- Unidad Avanzada de Neurorrehabilitación, Hospital Los Madroños, Madrid, España
| | - S Lejarreta
- Unidad Avanzada de Neurorrehabilitación, Hospital Los Madroños, Madrid, España
| | - P Davila-Pérez
- Servicio de Neurofisiología, Hospital Los Madroños, Madrid, España
| | - N León
- Unidad Avanzada de Neurorrehabilitación, Hospital Los Madroños, Madrid, España
| | - A Oliviero
- Unidad Avanzada de Neurorrehabilitación, Hospital Los Madroños, Madrid, España; Servicio de Neurofisiología, Hospital Los Madroños, Madrid, España; Grupo FENNSI, Hospital Nacional de Parapléjicos, SESCAM, Toledo, España
| |
Collapse
|
11
|
Self- and Parent-Reported Fatigue 7 Years After Severe Childhood Traumatic Brain Injury: Results of the Traumatisme Grave de l'Enfant Prospective Longitudinal Study. J Head Trauma Rehabil 2021; 35:104-116. [PMID: 31246880 DOI: 10.1097/htr.0000000000000502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate presence of and factors associated with self- and parent-reported fatigue 7 years after severe childhood traumatic brain injury (TBI) in the prospective longitudinal study TGE (Traumatisme Grave de l'Enfant-severe childhood trauma). METHODS Self-reports and/or parent reports on the Multidimensional Fatigue Scale were collected for 38 participants (aged 7-22 years) 7 years after severe childhood TBI, and 33 controls matched for age, gender, and parental educational level. The data collected included sociodemographic characteristics, age at injury and injury severity scores, overall disability (Glasgow Outcome Scale Extended), intellectual outcome (Wechsler scales), and questionnaires assessing executive functions, health-related quality of life, behavior, and participation. RESULTS Fatigue levels were significantly worse in the TBI than in the control group, especially for cognitive fatigue. Correlations of reported fatigue with age at injury, gender, TBI severity, and intellectual ability were moderate and often not significant. Fatigue was significantly associated with overall level of disability (Glasgow Outcome Scale Extended) and with all questionnaires completed by the same informant. CONCLUSION High levels of fatigue were reported by 30% to 50% of patients 7 years after a severe childhood TBI. Reported fatigue explained more than 60% of the variance of reported health-related quality of life by the same informant (patient or parent).
Collapse
|
12
|
Johansson B. Mental Fatigue after Mild Traumatic Brain Injury in Relation to Cognitive Tests and Brain Imaging Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115955. [PMID: 34199339 PMCID: PMC8199529 DOI: 10.3390/ijerph18115955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 01/09/2023]
Abstract
Most people recover within months after a mild traumatic brain injury (TBI) or concussion, but some will suffer from long-term fatigue with a reduced quality of life and the inability to maintain their employment status or education. For many people, mental fatigue is one of the most distressing and long-lasting symptoms following an mTBI. No efficient treatment options can be offered. The best method for measuring fatigue today is with fatigue self-assessment scales, there being no objective clinical tests available for mental fatigue. The aim here is to provide a narrative review and identify fatigue in relation to cognitive tests and brain imaging methods. Suggestions for future research are presented.
Collapse
Affiliation(s)
- Birgitta Johansson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 413 45 Göteborg, Sweden
| |
Collapse
|
13
|
Zhuo J, Jiang L, Rhodes CS, Roys S, Shanmuganathan K, Chen H, Prince JL, Badjatia N, Gullapalli RP. Early Stage Longitudinal Subcortical Volumetric Changes following Mild Traumatic Brain Injury. Brain Inj 2021; 35:725-733. [PMID: 33822686 PMCID: PMC8207827 DOI: 10.1080/02699052.2021.1906445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 01/07/2023]
Abstract
Objective: To investigate early brain volumetric changes from acute to 6 months following mild traumatic brain injury (mTBI) in deep gray matter regions and their association with patient 6-month outcome.Methods: Fifty-six patients with mTBI underwent MRI and behavioral evaluation at acute (<10 days) and approximately 1 and 6 months post injury. Regional volume changes were investigated in key gray matter regions: thalamus, hippocampus, putamen, caudate, pallidum, and amygdala, and compared with volumes from 34 healthy control subjects. In patients with mTBI, we further assessed associations between longitudinal regional volume changes with patient outcome measures at 6 months including post-concussive symptoms, cognitive performance, and overall satisfaction with life.Results: Reduction in thalamic and hippocampal volumes was observed at 1 month among patients with mTBI. Such volume reduction persisted in the thalamus until 6 months. Changes in thalamic volumes also correlated with multiple symptom and functional outcome measures in patients at 6 months.Conclusion: Our results indicate that the thalamus may be differentially affected among patients with mTBI, resulting in both structural and functional deficits with subsequent post-concussive sequelae and may serve as a biomarker for the assessment of efficacy of novel therapeutic interventions.
Collapse
Affiliation(s)
- Jiachen Zhuo
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Li Jiang
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Chandler Sours Rhodes
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
| | - Steven Roys
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Karthikamanthan Shanmuganathan
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Hegang Chen
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Rao P. Gullapalli
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Abstract
Thalamus plays an important role in the pathogenesis of multiple sclerosis-related fatigue (MSrF). However, the thalamus is a heterogeneous structure and the specific thalamic subregions that are involved in this condition are unclear. Here, we used thalamic shape analysis for the detailed localization of thalamic abnormalities in MSrF. Using the Modified Fatigue Impact Scale, we measured fatigue in 42 patients with relapsing-remitting multiple sclerosis (MS). The thalamic shape was extracted from T1w images using an automated pipeline. We investigated the association of thalamic surface deviations with the severity of global fatigue and its cognitive, physical and psychosocial subdomains. Cognitive fatigue was correlated with an inward deformity of the left anteromedial thalamic surface, but no other localized shape deviation was observed in correlation with global, physical or psychosocial fatigue. Our findings indicate that the left anteromedial thalamic subregions are implicated in cognitive fatigue, possibly through their role in reward processing and cognitive and executive functions.
Collapse
|
15
|
Raikes AC, Dailey NS, Forbeck B, Alkozei A, Killgore WDS. Daily Morning Blue Light Therapy for Post-mTBI Sleep Disruption: Effects on Brain Structure and Function. Front Neurol 2021; 12:625431. [PMID: 33633674 PMCID: PMC7901882 DOI: 10.3389/fneur.2021.625431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Mild traumatic brain injuries (mTBIs) are associated with novel or worsened sleep disruption. Several studies indicate that daily morning blue light therapy (BLT) is effective for reducing post-mTBI daytime sleepiness and fatigue. Studies demonstrating changes in brain structure and function following BLT are limited. The present study's purpose is to identify the effect of daily morning BLT on brain structure and functional connectivity and the association between these changes and self-reported change in post-mTBI daytime sleepiness. Methods: A total of 62 individuals recovering from a mTBI were recruited from two US cities to participate in a double-blind placebo-controlled trial. Eligible individuals were randomly assigned to undergo 6 weeks of 30 min daily morning blue or placebo amber light therapy (ALT). Prior to and following treatment all individuals completed a comprehensive battery that included the Epworth Sleepiness Scale as a measure of self-reported daytime sleepiness. All individuals underwent a multimodal neuroimaging battery that included anatomical and resting-state functional magnetic resonance imaging. Atlas-based regional change in gray matter volume (GMV) and region-to-region functional connectivity from baseline to post-treatment were the primary endpoints for this study. Results: After adjusting for pre-treatment GMV, individuals receiving BLT had greater GMV than those receiving amber light in 15 regions of interest, including the right thalamus and bilateral prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with greater GMV in 74 ROIs, covering many of the same general regions. Likewise, BLT was associated with increased functional connectivity between the thalamus and both prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with increased functional connectivity between attention and cognitive control networks as well as decreased connectivity between visual, motor, and attention networks (all FDR corrected p < 0.05). Conclusions: Following daily morning BLT, moderate to large increases in both gray matter volume and functional connectivity were observed in areas and networks previously associated with both sleep regulation and daytime cognitive function, alertness, and attention. Additionally, these findings were associated with improvements in self-reported daytime sleepiness. Further work is needed to identify the personal characteristics that may selectively identify individuals recovering from a mTBI for whom BLT may be optimally beneficial.
Collapse
Affiliation(s)
- Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Natalie S Dailey
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Brittany Forbeck
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Anna Alkozei
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Chevignard M, Câmara-Costa H, Dellatolas G. Pediatric traumatic brain injury and abusive head trauma. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:451-484. [PMID: 32958191 DOI: 10.1016/b978-0-444-64150-2.00032-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Childhood traumatic brain injury (TBI) commonly occurs during brain development and can have direct, immediately observable neurologic, cognitive, and behavioral consequences. However, it can also disrupt subsequent brain development, and long-term outcomes are a combination of preinjury development and abilities, consequences of brain injury, as well as delayed impaired development of skills that were immature at the time of injury. There is a growing number of studies on mild TBI/sport-related concussions, describing initial symptoms and their evolution over time and providing guidelines for effective management of symptoms and return to activity/school/sports. Mild TBI usually does not lead to long-term cognitive or academic consequences, despite reports of behavioral/psychologic issues postinjury. Regarding moderate to severe TBI, injury to the brain is more severe, with evidence of a number of detrimental consequences in various domains. Patients can display neurologic impairments (e.g., motor deficits, signs of cerebellar disorder, posttraumatic epilepsy), medical problems (e.g., endocrine pituitary deficits, sleep-wake abnormalities), or sensory deficits (e.g., visual, olfactory deficits). The most commonly reported deficits are in the cognitive-behavioral field, which tend to be significantly disabling in the long-term, impacting the development of autonomy, socialization and academic achievement, participation, quality of life, and later, independence and ability to enter the workforce (e.g., intellectual deficits, slow processing speed, attention, memory, executive functions deficits, impulsivity, intolerance to frustration). A number of factors influence outcomes following pediatric TBI, including preinjury stage of development and abilities, brain injury severity, age at injury (with younger age at injury most often associated with worse outcomes), and a number of family/environment factors (e.g., parental education and occupation, family functioning, parenting style, warmth and responsiveness, access to rehabilitation and care). Interventions should identify and target these specific factors, given their major role in postinjury outcomes. Abusive head trauma (AHT) occurs in very young children (most often <6 months) and is a form of severe TBI, usually associated with delay before appropriate care is sought. Outcomes are systematically worse following AHT than following accidental TBI, even when controlling for age at injury and injury severity. Children with moderate to severe TBI and AHT usually require specific, coordinated, multidisciplinary, and long-term rehabilitation interventions and school adaptations, until transition to adult services. Interventions should be patient- and family-centered, focusing on specific goals, comprising education about TBI, and promoting optimal parenting, communication, and collaborative problem-solving.
Collapse
Affiliation(s)
- Mathilde Chevignard
- Rehabilitation Department for Children with Acquired Neurological Injury and Outreach Team for Children and Adolescents with Acquired Brain Injury, Saint Maurice Hospitals, Saint Maurice, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France; GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| | - Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France
| |
Collapse
|
17
|
Andelic N, Røe C, Brunborg C, Zeldovich M, Løvstad M, Løke D, Borgen IM, Voormolen DC, Howe EI, Forslund MV, Dahl HM, von Steinbuechel N. Frequency of fatigue and its changes in the first 6 months after traumatic brain injury: results from the CENTER-TBI study. J Neurol 2020; 268:61-73. [PMID: 32676767 PMCID: PMC7815577 DOI: 10.1007/s00415-020-10022-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 11/26/2022]
Abstract
Background Fatigue is one of the most commonly reported subjective symptoms following traumatic brain injury (TBI). The aims were to assess frequency of fatigue over the first 6 months after TBI, and examine whether fatigue changes could be predicted by demographic characteristics, injury severity and comorbidities. Methods Patients with acute TBI admitted to 65 trauma centers were enrolled in the study Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI). Subjective fatigue was measured by single item on the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), administered at baseline, three and 6 months postinjury. Patients were categorized by clinical care pathway: admitted to an emergency room (ER), a ward (ADM) or an intensive care unit (ICU). Injury severity, preinjury somatic- and psychiatric conditions, depressive and sleep problems were registered at baseline. For prediction of fatigue changes, descriptive statistics and mixed effect logistic regression analysis are reported. Results Fatigue was experienced by 47% of patients at baseline, 48% at 3 months and 46% at 6 months. Patients admitted to ICU had a higher probability of experiencing fatigue than those in ER and ADM strata. Females and individuals with lower age, higher education, more severe intracranial injury, preinjury somatic and psychiatric conditions, sleep disturbance and feeling depressed postinjury had a higher probability of fatigue. Conclusion A high and stable frequency of fatigue was found during the first 6 months after TBI. Specific socio-demographic factors, comorbidities and injury severity characteristics were predictors of fatigue in this study. Electronic supplementary material The online version of this article (10.1007/s00415-020-10022-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nada Andelic
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway.
- Faculty of Medicine, Institute of Health and Society, Research Centre for Habilitation and Rehabilitation Models and Services (CHARM), University of Oslo, Oslo, Norway.
| | - Cecilie Røe
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Marina Zeldovich
- Institute of Medical Psychology and Medical Sociology, University Medical Center, Göttingen, Germany
| | - Marianne Løvstad
- Research Department, Sunnaas Rehabilitation Hospital, Bjørnemyr, Norway
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Daniel Løke
- Research Department, Sunnaas Rehabilitation Hospital, Bjørnemyr, Norway
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Ida M Borgen
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Daphne C Voormolen
- Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Emilie I Howe
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marit V Forslund
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Hilde M Dahl
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Child Neurology, Oslo University Hospital, Oslo, Norway
| | - Nicole von Steinbuechel
- Institute of Medical Psychology and Medical Sociology, University Medical Center, Göttingen, Germany
| |
Collapse
|
18
|
Thalamo-cortical dysfunction contributes to fatigability in multiple sclerosis patients: A neurophysiological study. Mult Scler Relat Disord 2019; 39:101897. [PMID: 31869598 DOI: 10.1016/j.msard.2019.101897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/30/2019] [Accepted: 12/16/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Fatigue and fatigability are common symptoms reported by patients affected by Multiple Sclerosis (MS). The pathogenic mechanisms of such symptoms are currently unknown, but increasing evidence suggests that thalamus could play a key-role. High-frequency oscillations (HFOs) are a neurophysiological measure reflecting the activity of thalamo-cortical network. In particular, the early component is generated from thalamic axons while the late part results from neurons located in somatosensory cortex. OBJECTIVE To investigate the effect of a fatigue-inducing exercise on HFOs and on strength performances in MS patients and healthy controls (HCs). METHODS Fifteen patients and fifteen HCs participated in this study. We recorded HFOs from median nerve somatosensory evoked potentials and assessed strength performances, before and after a fatigue-inducing exercise of hand muscles. RESULTS Compared to HCs, after repeated fatiguing tasks, patients showed a significant reduction of early component of HFOs area and a significant increase of late component of HFOs duration. Strength performance declined both in patients and in HCs but remained lower in patients at all time-points. CONCLUSIONS HFOs, a neurophysiological marker of thalamo-cortical pathway, are significantly modified by fatiguing tasks in MS patients, in particular the early component that refers to the functionality of thalamic axons.
Collapse
|
19
|
A randomized, double-blind, placebo-controlled trial of blue wavelength light exposure on sleep and recovery of brain structure, function, and cognition following mild traumatic brain injury. Neurobiol Dis 2019; 134:104679. [PMID: 31751607 DOI: 10.1016/j.nbd.2019.104679] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/20/2019] [Accepted: 11/15/2019] [Indexed: 01/17/2023] Open
Abstract
Sleep and circadian rhythms are among the most powerful but least understood contributors to cognitive performance and brain health. Here we capitalize on the circadian resetting effect of blue-wavelength light to phase shift the sleep patterns of adult patients (aged 18-48 years) recovering from mild traumatic brain injury (mTBI), with the aim of facilitating recovery of brain structure, connectivity, and cognitive performance. During a randomized, double-blind, placebo-controlled trial of 32 adults with a recent mTBI, we compared 6-weeks of daily 30-min pulses of blue light (peak λ = 469 nm) each morning versus amber placebo light (peak λ = 578 nm) on neurocognitive and neuroimaging outcomes, including gray matter volume (GMV), resting-state functional connectivity, directed connectivity using Granger causality, and white matter integrity using diffusion tensor imaging (DTI). Relative to placebo, morning blue light led to phase-advanced sleep timing, reduced daytime sleepiness, and improved executive functioning, and was associated with increased volume of the posterior thalamus (i.e., pulvinar), greater thalamo-cortical functional connectivity, and increased axonal integrity of these pathways. These findings provide insight into the contributions of the circadian and sleep systems in brain repair and lay the groundwork for interventions targeting the retinohypothalamic system to facilitate injury recovery.
Collapse
|
20
|
Capone F, Collorone S, Cortese R, Di Lazzaro V, Moccia M. Fatigue in multiple sclerosis: The role of thalamus. Mult Scler 2019; 26:6-16. [DOI: 10.1177/1352458519851247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatigue is very common in multiple sclerosis (MS) and is often considered as its most disabling symptom. Over the last 20 years, an increasing number of studies have evaluated the pathogenetic bases of MS-related fatigue. Converging evidence from neurophysiology and neuroimaging research suggests that a dysfunction in a cortico-subcortical pathway, centered on thalamus, is involved in the pathogenesis of fatigue. However, type and significance of such dysfunction remain unknown, and some studies reported an increase in the activity and connectivity within the thalamic network, whereas others suggested its reduction. Hereby, we review the results of neuroimaging studies supporting the different hypotheses about the role of thalamic network in the pathophysiology of MS-related fatigue and discuss limitations and shortcomings of available data, highlighting the key challenges in the field and the directions for future research.
Collapse
Affiliation(s)
- Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy/NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - Sara Collorone
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Rosa Cortese
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello Moccia
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK/MS Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Naples, Italy
| |
Collapse
|
21
|
Mollayeva T, Stock D, Colantonio A. Physiological and pathological covariates of persistent concussion-related fatigue: results from two regression methodologies. Brain Inj 2019; 33:463-479. [PMID: 30663436 DOI: 10.1080/02699052.2019.1566833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/05/2018] [Accepted: 01/05/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fatigue severity in persons with mild traumatic brain injury (mTBI) has received little research attention, despite its typically positively skewed nature. Investigation of covariates across a range of fatigue severity may provide insight into important contributors. OBJECTIVE To assess the relative significance of a priori-hypothesized covariates of physiological and pathological (mental and physical) fatigue in persons with mTBI/concussion, applying ordinary least squares (OLS) and quantile regression (QR) approaches. METHODS We conducted a cross-sectional investigation in 80 participants with mTBI/concussion (mean age 45.4 ± 10.1 years, 59% male). The fatigue severity scale (FSS) was used as an outcome measure. Predictors of this outcome, grouped into physiological and pathological models of fatigue were assessed using OLS and QR. RESULTS The mean total FSS score was 46.13 ± 14.59, and the median was 49 (interquartile range 37-57), demonstrating positive skewness. Fatigue severity was associated with variables within the mental, psychological and psychiatric domains at different levels of the fatigue score distribution. CONCLUSION Results highlighted that some covariates had a significant impact on the FSS total score at non-central parts of its distribution, while others exhibited significant impact across the entire distribution. Addressing covariates of fatigue across the severity continuum can enhance research and clinical management.
Collapse
Affiliation(s)
- Tatyana Mollayeva
- a Rehabilitation Sciences Institute, Faculty of Medicine , University of Toronto , Canada , Ontario , Canada
- b Toronto Rehab-University Health Network , Research Department , Toronto , Ontario , Canada
| | - David Stock
- c Department of Clinical Health and Epidemiology , Dalhousie University , Halifax , Nova Scotia , Canada
| | - Angela Colantonio
- a Rehabilitation Sciences Institute, Faculty of Medicine , University of Toronto , Canada , Ontario , Canada
- b Toronto Rehab-University Health Network , Research Department , Toronto , Ontario , Canada
| |
Collapse
|