1
|
Smal M, Memoli D, Alexandrova E, Di Rosa D, D'Agostino Y, Russo F, Giurato G, Nassa G, Tarallo R, Weisz A, Rizzo F. Small non-coding RNA transcriptomic profiling in adult and fetal human brain. Sci Data 2024; 11:767. [PMID: 38997254 PMCID: PMC11245507 DOI: 10.1038/s41597-024-03604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Small non-coding RNAs (sncRNAs) make up ~1% of the transcriptome; nevertheless, they play significant roles in regulating cellular processes. Given the complexity of the central nervous system, sncRNAs likely hold particular importance in the human brain. In this study, we provide sncRNA transcriptomic profiles in a range of adult and prenatal brain regions, with a focus on piRNAs, due to their underexplored expression in somatic cells and tissue-specific nature. Using the WIND workflow, which combines two detection methods, we found 1333 (731 miRNAs, 249 piRNAs, 285 snoRNAs, and 68 other sncRNAs) and 1445 unique sncRNAs (770 miRNAs, 307 piRNAs, 289 snoRNAs, and 79 other sncRNAs) in developing and adult brains, respectively. Significant variations were found upon comparison of fetal and adult brain groups, with 82 miRNAs, 17 piRNAs, and 70 snoRNAs enriched in fetal brains and 22 miRNAs, 11 piRNAs in adult brains. This dataset represents a valuable resource for exploring the sncRNA roles in brain function, their involvement in neurological diseases, and the molecular mechanisms behind brain region interactions.
Collapse
Affiliation(s)
- Marharyta Smal
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
| | - Domenico Di Rosa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
| | - Ylenia D'Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
- Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, Salerno, Italy
| | - Fabio Russo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
- Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, Campus of Medicine - University of Salerno, 84081, Baronissi, SA, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, Campus of Medicine - University of Salerno, 84081, Baronissi, SA, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, Campus of Medicine - University of Salerno, 84081, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy.
- Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, Salerno, Italy.
- Genome Research Center for Health - CRGS, Campus of Medicine - University of Salerno, 84081, Baronissi, SA, Italy.
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy.
- Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, Salerno, Italy.
- Genome Research Center for Health - CRGS, Campus of Medicine - University of Salerno, 84081, Baronissi, SA, Italy.
| |
Collapse
|
2
|
Esterov D, Yin Z, Persaud T, Shan X, Murphy MC, Ehman RL, Huston J, Brown AW. Association Between Anatomic and Clinical Indicators of Injury Severity After Moderate-Severe Traumatic Brain Injury: A Pilot Study Using Multiparametric Magnetic Resonance Imaging. Neurotrauma Rep 2024; 5:232-242. [PMID: 38524727 PMCID: PMC10960168 DOI: 10.1089/neur.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
This study sought to identify whether an anatomical indicator of injury severity as measured by multiparametric magnetic resonance imaging (MRI) including magnetic resonance elastography (MRE), is predictive of a clinical measure of injury severity after moderate-severe traumatic brain injury (TBI). Nine individuals who were admitted to acute inpatient rehabilitation after moderate-to-severe TBI completed a comprehensive MRI protocol prior to discharge from rehabilitation, which included conventional MRI with diffusion tensor imaging (DTI). Of those, five of nine also underwent brain MRE to measure the brain parenchyma stiffness. Clinical severity of injury was measured by the length of post-traumatic amnesia (PTA). MRI-assessed non-hemorrhage contusion score and hemorrhage score, DTI-measured white matter fractional anisotropy, and MRE-measured lesion stiffness were all assessed. A higher hemorrhagic score was significantly associated with a longer length of PTA (p = 0.026). Participants with a longer PTA tended to have a higher non-hemorrhage contusion score and softer contusion lesions than the contralateral control side, although the small sample size did not allow for assessment of a significant association. To our knowledge, this is the first report applying MRI/MRE imaging protocol to quantitate altered brain anatomy after moderate-severe TBI and its association with PTA, a known clinical predictor of post-acute outcome. Future larger studies could lead to the development of prediction models that integrate clinical data with anatomical (MRI), structural (DTI), and mechanical (MRE) changes caused by TBI, to inform prognosis and care planning.
Collapse
Affiliation(s)
- Dmitry Esterov
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ziying Yin
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Trevor Persaud
- Department of Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Xiang Shan
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Mathew C. Murphy
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Richard L. Ehman
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - John Huston
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Allen W. Brown
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Chen CH, Chu YT, Chen YF, Ko TY, Cheng YW, Lee MJ, Chen PL, Tang SC, Jeng JS. Comparison of clinical and neuroimaging features between NOTCH3 mutations and nongenetic spontaneous intracerebral haemorrhage. Eur J Neurol 2022; 29:3243-3254. [PMID: 35781912 DOI: 10.1111/ene.15485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The NOTCH3 mutation is a common cause of hereditary cerebral small vessel disease (CSVD) and may be a cause of spontaneous intracerebral haemorrhage (ICH). We aimed to investigate the clinical/imaging features for identifying the NOTCH3 mutations related ICH. METHODS The study was based on a cohort of 749 CSVD patients in Taiwan who received next-generation sequencing of CSVD genes including NOTCH3. Patients with history of ICH (n=206) were included for analysis. The CSVD neuroimaging markers were compared between the patients with NOTCH3 and without known genetic mutations. RESULTS After excluding the patients with other causes of ICH (structural lesions, systemic/medication-related, or amyloid angiopathy) and those without neuroimaging, 45 NOTCH3 mutation patients and 109 nongenetic ICH patients were included. The NOTCH3 mutation patients were more likely to have thalamic haemorrhage, a family history of stroke, and more severe CSVD neuroimaging markers. A five-point NOTCH3-ICH score was constructed and consisted of: history of stroke in siblings, thalamic haemorrhage, any deep nuclei lacunae, any hippocampal cerebral microbleed (CMB), and a thalamic CMB >5 (one point for each). A score ≥2 had a sensitivity of 88.9% and a specificity of 64.2% in identifying the NOTCH3 mutation. The NOTCH3 mutation patients had a higher risk of recurrent stroke (9.1 vs. 4.5 per 100 person-years; log-rank p = 0.03) during follow-up. CONCLUSION The patients with NOTCH3 mutation-related ICH had a higher burden of CMB in the hippocampus/thalamus and a higher recurrent stroke risk. The NOTCH3-ICH score may assist identifying genetic causes of ICH.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Tsai Chu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Fang Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Yu Ko
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Decreased Interhemispheric Functional Connectivity and Its Associations with Clinical Correlates following Traumatic Brain Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3408660. [PMID: 35437509 PMCID: PMC9012975 DOI: 10.1155/2022/3408660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
Objective To explore the interhemispheric functional coordination following traumatic brain injury (TBI) and its association with posttraumatic anxiety and depressive symptoms. Methods This was a combination of a retrospective cohort study and a cross-sectional observational study. We investigated the functional coordination between hemispheres by voxel-mirrored homotopic connectivity (VMHC). Grey matter volumes were examined by voxel-based morphometry (VBM), and microstructural integrity of the corpus callosum (CC) was assessed by diffusion tension imaging (DTI). The anxiety and depressive symptoms were evaluated with the Hospital Anxiety and Depression Scale. Results The VMHC values of the bilateral middle temporal gyrus (MTG) and orbital middle frontal gyrus (MFG) were significantly decreased in TBI patients versus the healthy controls. Weakened homotopic functional connectivity (FC) in the bilateral orbital MFG is moderate positively correlated with anxiety and depressive symptoms. The white matter integrity in the CC was extensively reduced in TBI patients. In the receiver operating characteristic analysis, the VMHC value of the orbital MFG could distinguish TBI from HC with an area under the curve of 0.939 (sensitivity of 1 and specificity of 0.867). Conclusion TBI disrupts the interhemispheric functional and structural connection, which is correlated with posttraumatic mood disorders. These findings may serve as a clinical indicator for diagnosis.
Collapse
|
5
|
Tjerkaski J, Nyström H, Raj R, Lindblad C, Bellander BM, Nelson DW, Thelin EP. Extended Analysis of Axonal Injuries Detected Using Magnetic Resonance Imaging in Critically Ill Traumatic Brain Injury Patients. J Neurotrauma 2022; 39:58-66. [PMID: 34806407 PMCID: PMC8785713 DOI: 10.1089/neu.2021.0159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies show conflicting results regarding the prognostic significance of traumatic axonal injuries (TAI) in patients with traumatic brain injury (TBI). Therefore, we documented the presence of TAI in several brain regions, using different magnetic resonance imaging (MRI) sequences, and assessed their association to patient outcomes using machine learning. Further, we created a novel MRI-based TAI grading system with the goal of improving outcome prediction in TBI. We subsequently evaluated the performance of several TAI grading systems. We used a genetic algorithm to identify TAI that distinguish favorable from unfavorable outcomes. We assessed the discriminatory performance (area under the curve [AUC]) and goodness-of-fit (Nagelkerke pseudo-R2) of the novel Stockholm MRI grading system and the TAI grading systems of Adams and associates, Firsching and coworkers. and Abu Hamdeh and colleagues, using both univariate and multi-variate logistic regression. The dichotomized Glasgow Outcome Scale was considered the primary outcome. We examined the MRI scans of 351 critically ill patients with TBI. The TAI in several brain regions, such as the midbrain tegmentum, were strongly associated with unfavorable outcomes. The Stockholm MRI grading system exhibited the highest AUC (0.72 vs. 0.68-0.69) and Nagelkerke pseudo-R2 (0.21 vs. 0.14-0.15) values of all TAI grading systems. These differences in model performance, however, were not statistically significant (DeLong test, p > 0.05). Further, all included TAI grading systems improved outcome prediction relative to established outcome predictors of TBI, such as the Glasgow Coma Scale (likelihood-ratio test, p < 0.001). Our findings suggest that the detection of TAI using MRI is a valuable addition to prognostication in TBI.
Collapse
Affiliation(s)
- Jonathan Tjerkaski
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Harriet Nyström
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David W. Nelson
- Department of Section for Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eric P. Thelin
- Department of Clinical Neuroscience, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Chronic Administration of 7,8-DHF Lessens the Depression-like Behavior of Juvenile Mild Traumatic Brain Injury Treated Rats at Their Adult Age. Pharmaceutics 2021; 13:pharmaceutics13122169. [PMID: 34959450 PMCID: PMC8704538 DOI: 10.3390/pharmaceutics13122169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity among the global youth and commonly results in long-lasting sequelae, including paralysis, epilepsy, and a host of mental disorders such as major depressive disorder. Previous studies were mainly focused on severe TBI as it occurs in adults. This study explored the long-term adverse effect of mild TBI in juvenile animals (mTBI-J). Male Sprague Dawley rats received mTBI-J or sham treatment at six weeks old, then underwent behavioral, biochemical, and histological experiments three weeks later (at nine weeks old). TTC staining, H&E staining, and brain edema measurement were applied to evaluate the mTBI-J induced cerebral damage. The forced swimming test (FST) and sucrose preference test (SPT) were applied for measuring depression-like behavior. The locomotor activity test (LAT) was performed to examine mTBI-J treatment effects on motor function. After the behavioral experiments, the dorsal hippocampus (dHip) and ventral hippocampus (vHip) were dissected out for western blotting to examine the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB). Finally, a TrkB agonist 7,8-DHF was injected intraperitoneally to evaluate its therapeutic effect on the mTBI-J induced behavioral abnormalities at the early adult age. Results showed that a mild brain edema occurred, but no significant neural damage was found in the mTBI-J treated animals. In addition, a significant increase of depression-like behaviors was observed in the mTBI-J treated animals; the FST revealed an increase in immobility, and a decrease in sucrose consumption was found in the mTBI-J treated animals. There were no differences observed in the total distance traveled of the LAT and the fall latency of the rotarod test. The hippocampal BDNF expression, but not the TrkB, were significantly reduced in mTBI-J, and the mTBI-J treatment-induced depression-like behavior was lessened after four weeks of 7,8-DHF administration. Collectively, these results indicate that even a mild juvenile TBI treatment that did not produce motor deficits or significant histological damage could have a long-term adverse effect that could be sustained to adulthood, which raises the depression-like behavior in the adult age. In addition, chronic administration of 7,8-DHF lessens the mTBI-J treatment-induced depression-like behaviors in adult rats. We suggest the potential usage of 7,8-DHF as a therapeutic agent for preventing the long-term adverse effect of mTBI-J.
Collapse
|
7
|
Moe HK, Follestad T, Andelic N, Håberg AK, Flusund AMH, Kvistad KA, Saksvoll EH, Olsen Ø, Abel-Grüner S, Sandrød O, Skandsen T, Vik A, Moen KG. Traumatic axonal injury on clinical MRI: association with the Glasgow Coma Scale score at scene of injury or at admission and prolonged posttraumatic amnesia. J Neurosurg 2021; 135:562-573. [PMID: 33096528 DOI: 10.3171/2020.6.jns20112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/08/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim in this study was to investigate if MRI findings of traumatic axonal injury (TAI) after traumatic brain injury (TBI) are related to the admission Glasgow Coma Scale (GCS) score and prolonged duration of posttraumatic amnesia (PTA). METHODS A total of 490 patients with mild to severe TBI underwent brain MRI within 6 weeks of injury (mild TBI: median 2 days; moderate to severe TBI: median 8 days). The location of TAI lesions and measures of total TAI lesion burden (number and volume of lesions on FLAIR and diffusion-weighted imaging and number of lesions on T2*-weighted gradient echo or susceptibility-weighted imaging) were quantified in a blinded manner for clinical information. The volume of contusions on FLAIR was likewise recorded. Associations between GCS score and the location and burden of TAI lesions were examined with multiple linear regression, adjusted for age, Marshall CT score (which includes compression of basal cisterns, midline shift, and mass lesions), and alcohol intoxication. The predictive value of TAI lesion location and burden for duration of PTA > 28 days was analyzed with multiple logistic regression, adjusted for age and Marshall CT score. Complete-case analyses of patients with TAI were used for the regression analyses of GCS scores (n = 268) and PTA (n = 252). RESULTS TAI lesions were observed in 58% of patients: in 7% of mild, 69% of moderate, and 93% of severe TBI cases. The TAI lesion location associated with the lowest GCS scores were bilateral lesions in the brainstem (mean difference in GCS score -2.5), followed by lesions bilaterally in the thalamus, unilaterally in the brainstem, and lesions in the splenium. The volume of TAI on FLAIR was the measure of total lesion burden most strongly associated with the GCS score. Bilateral TAI lesions in the thalamus had the largest predictive value for PTA > 28 days (OR 16.2, 95% CI 3.9-87.4). Of the measures of total TAI lesion burden, the FLAIR volume of TAI predicted PTA > 28 days the best. CONCLUSIONS Bilateral TAI lesions in the brainstem and thalamus, as well as the total volume of TAI lesions on FLAIR, had the strongest association with the GCS score and prolonged PTA. The current study proposes a first step toward a modified classification of TAI, with grades ranked according to their relation to these two measures of clinical TBI severity.
Collapse
Affiliation(s)
| | - Turid Follestad
- 2Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim
| | - Nada Andelic
- 3Institute of Health and Society, Research Centre for Habilitation and Rehabilitation Models and Services (CHARM), Faculty of Medicine, University of Oslo
- 4Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Ullevål
| | - Asta Kristine Håberg
- Departments of1Neuromedicine and Movement Science and
- Departments of5Radiology and Nuclear Medicine
| | - Anne-Mari Holte Flusund
- Departments of1Neuromedicine and Movement Science and
- 6Department of Radiology, Molde Hospital, Molde; and
| | | | - Elin Hildrum Saksvoll
- 7Department of Radiology, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Øystein Olsen
- 7Department of Radiology, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | | | | | - Toril Skandsen
- Departments of1Neuromedicine and Movement Science and
- 9Physical Medicine and Rehabilitation, and
| | - Anne Vik
- Departments of1Neuromedicine and Movement Science and
- 10Neurosurgery, St. Olav's Hospital, Trondheim University Hospital, Trondheim
| | - Kent Gøran Moen
- Departments of1Neuromedicine and Movement Science and
- 7Department of Radiology, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| |
Collapse
|
8
|
Bianciardi M, Izzy S, Rosen BR, Wald LL, Edlow BL. Location of Subcortical Microbleeds and Recovery of Consciousness After Severe Traumatic Brain Injury. Neurology 2021; 97:e113-e123. [PMID: 34050005 PMCID: PMC8279563 DOI: 10.1212/wnl.0000000000012192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In patients with severe traumatic brain injury (TBI), coma is associated with impaired subcortical arousal mechanisms. However, it is unknown which nuclei involved in arousal (arousal nuclei) are implicated in coma pathogenesis and are compatible with coma recovery. METHODS We mapped an atlas of arousal nuclei in the brainstem, thalamus, hypothalamus, and basal forebrain onto 3 tesla susceptibility-weighted images (SWI) in 12 patients with acute severe TBI who presented in coma and recovered consciousness within 6 months. We assessed the spatial distribution and volume of SWI microbleeds and evaluated the association of microbleed volume with the duration of unresponsiveness and functional recovery at 6 months. RESULTS There was no single arousal nucleus affected by microbleeds in all patients. Rather, multiple combinations of microbleeds in brainstem, thalamic, and hypothalamic arousal nuclei were associated with coma and were compatible with recovery of consciousness. Microbleeds were frequently detected in the midbrain (100%), thalamus (83%), and pons (75%). Within the brainstem, the microbleed incidence was largest within the mesopontine tegmentum (e.g., pedunculotegmental nucleus, mesencephalic reticular formation) and ventral midbrain (e.g., substantia nigra, ventral tegmental area). Brainstem arousal nuclei were partially affected by microbleeds, with microbleed volume not exceeding 35% of brainstem nucleus volume on average. Compared to microbleed volume within nonarousal brainstem regions, the microbleed volume within arousal brainstem nuclei accounted for a larger proportion of variance in the duration of unresponsiveness and 6-month Glasgow Outcome Scale-Extended scores. CONCLUSION These results suggest resilience of arousal mechanisms in the human brain after severe TBI.
Collapse
Affiliation(s)
- Marta Bianciardi
- From the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging (M.B., B.R.R., L.L.W., B.L.E.), and Center for Neurotechnology and Neurorecovery, Department of Neurology (B.L.E.), Massachusetts General Hospital and Harvard Medical School; Division of Sleep Medicine (M.B.), Harvard University; and Department of Neurology (S.I.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| | | | | | | | | |
Collapse
|
9
|
Hart T, Ferraro M, Rabinowitz A, Fitzpatrick DeSalme E, Nelson L, Marcy E, Farm S, Turkstra L. Improving communication with patients in post-traumatic amnesia: development and impact of a clinical protocol. Brain Inj 2020; 34:1518-1524. [PMID: 32835514 DOI: 10.1080/02699052.2020.1809710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To assess the impact of staff training focused on improved treatment and communication with patients in post-traumatic amnesia (PTA) or other disorders of explicit (declarative) memory. A major aim was to minimize questions demanding recall from explicit memory, e.g., orientation quizzing, and personal/medical history questions, which may produce unreliable information and exacerbate patient frustration and anxiety. METHODS Mixed-methods design. Inpatients with impairments of explicit memory were observed before (n = 4) and after (n = 4) training, with staff interactions recorded verbatim. Records were coded for types of questions and patient responses. Clinicians who worked before and after training were surveyed regarding perceived changes in practice, team functioning, and patient behavior. RESULTS Explicit memory questions decreased significantly, as did irrelevant or "don't know" responses from patients, with large nonparametric effect sizes noted. The frequency of questions not relying on explicit memory remained stable. Most clinicians reported positive effects on their own and others' practice with memory impaired patients, and one-quarter noted less patient frustration or agitation. CONCLUSIONS Although questioning patients is a natural part of medical care, targeted staff training can result in positive changes in communication practice and should be considered for facilities treating patients in PTA.
Collapse
Affiliation(s)
- Tessa Hart
- Moss Rehabilitation Research Institute , Elkins Park, Pennsylvania, USA
| | - Mary Ferraro
- Moss Rehabilitation Research Institute , Elkins Park, Pennsylvania, USA.,Drucker Brain Injury Center, MossRehab Hospital , Elkins Park, Pennsylvania, USA
| | - Amanda Rabinowitz
- Moss Rehabilitation Research Institute , Elkins Park, Pennsylvania, USA
| | | | - Lauren Nelson
- Drexel University College of Medicine , Philadelphia, Pennsylvania, USA
| | - Elizabeth Marcy
- Drucker Brain Injury Center, MossRehab Hospital , Elkins Park, Pennsylvania, USA
| | - Stephanie Farm
- Drucker Brain Injury Center, MossRehab Hospital , Elkins Park, Pennsylvania, USA
| | - Lyn Turkstra
- School of Rehabilitation Science, McMaster University , Ontario, California, USA
| |
Collapse
|