1
|
Miller RM, Dunn JA, O'Beirne GA, Whitney SL, Snell DL. Relationships between vestibular issues, noise sensitivity, anxiety and prolonged recovery from mild traumatic brain injury among adults: a scoping review. Brain Inj 2024; 38:607-619. [PMID: 38597651 DOI: 10.1080/02699052.2024.2337905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND We investigated the extent of literature and findings on relationships between vestibular issues, noise sensitivity (NS), and anxiety. We were interested in how relationships among these factors impacted adults' recovery three months or more after mild traumatic brain injury (mTBI). METHODS We conducted a scoping review to evaluate the extent of evidence linking relationships between vestibular issues, NS and anxiety with recovery after mTBI. Data relating to study characteristics and key findings were extracted and used to inform a critical narrative synthesis of findings. RESULTS After screening and full-text review, we included two studies. Both studies considered the combination of vestibular issues, NS and anxiety and mTBI recovery. Vestibular issues, NS and anxiety were all significantly associated with one another and their presence was the strongest indicator that symptoms would extend beyond three-months after mTBI. CONCLUSION Few studies have focused on the relationships that vestibular issues, NS and anxiety have with one another and recovery after mTBI. Given the apparent strong relationships between these factors and prolonged recovery, we highlight this as an area warranting further investigation.
Collapse
Affiliation(s)
- Rebekah M Miller
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Jennifer A Dunn
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Greg A O'Beirne
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- Eisdell Moore Centre for Hearing and Balance Research, Univeristy of Auckland, Auckland, New Zealand
| | - Susan L Whitney
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah L Snell
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
2
|
Thielen H, Huenges Wajer IMC, Tuts N, Welkenhuyzen L, Lafosse C, Gillebert CR. The Multi-Modal Evaluation of Sensory Sensitivity (MESSY): Assessing a commonly missed symptom of acquired brain injury. Clin Neuropsychol 2024; 38:377-411. [PMID: 37291083 DOI: 10.1080/13854046.2023.2219024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Objective: Sensory hypersensitivity is common after acquired brain injury. Since appropriate diagnostic tools are lacking, these complaints are overlooked by clinicians and available literature is limited to light and noise hypersensitivity after concussion. This study aimed to investigate the prevalence of sensory hypersensitivity in other modalities and after other types of brain injury. Method: We developed the Multi-Modal Evaluation of Sensory Sensitivity (MESSY), a patient-friendly questionnaire that assesses sensory sensitivity across multiple sensory modalities. 818 neurotypical adults (mean age = 49; 244 male) and 341 chronic acquired brain injury patients (including stroke, traumatic brain injury, and brain tumour patients) (mean age = 56; 126 male) completed the MESSY online. Results: The MESSY had a high validity and reliability in neurotypical adults. Post-injury sensory hypersensitivity (examined using open-ended questions) was reported by 76% of the stroke patients, 89% of the traumatic brain injury patients, and 82% of the brain tumour patients. These complaints occurred across all modalities with multisensory, visual, and auditory hypersensitivity being the most prevalent. Patients with post-injury sensory hypersensitivity reported a higher sensory sensitivity severity on the multiple-choice items of the MESSY as compared to neurotypical adults and acquired brain injury patients without post-injury sensory hypersensitivity (across all sensory modalities) (effect sizes (partial eta squared) ranged from .06 to .22). Conclusions: These results show that sensory hypersensitivity is prevalent after different types of acquired brain injury as well as across several sensory modalities. The MESSY can improve recognition of these symptoms and facilitate further research.
Collapse
Affiliation(s)
- Hella Thielen
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Irene M C Huenges Wajer
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - Nora Tuts
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lies Welkenhuyzen
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department Psychology, Hospital East-Limbourgh, Genk, Belgium
- TRACE, Centre for Translational Psychological Research (TRACE), Genk, Belgium
| | - Cristophe Lafosse
- Paramedical and Scientific Director, RevArte Rehabilitation Hospital, Edegem, Belgium
| | - Celine R Gillebert
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- TRACE, Centre for Translational Psychological Research (TRACE), Genk, Belgium
| |
Collapse
|
3
|
de Sain AM, Pellikaan LWM, van Voskuilen J, Migdis M, Sommers-Spijkerman MPJ, Visser-Meily JMA, Huenges Wajer IMC. Sensory hypersensitivity after acquired brain injury: the patient perspective. Disabil Rehabil 2023:1-8. [PMID: 37649314 DOI: 10.1080/09638288.2023.2251401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE Sensory hypersensitivity is a frequently reported complaint after acquired brain injury (ABI). This study explores patients' perceptions of sensory hypersensitivity following ABI and its impact on everyday life. MATERIALS AND METHODS Semi-structured interviews were conducted with 18 patients with ABI (stroke, brain tumour, TBI) who reported complaints of sensory hypersensitivity. Interview data were analysed using qualitative thematic analysis. RESULTS Six themes emerged from the data: (1) definition of sensory hypersensitivity, relating to individual perceptions of sensory hypersensitivity; (2) type of sensory stimuli, relating to the variety of stimuli that patients may be sensitive to; (3) course, relating to changes in sensory hypersensitivity following ABI; (4) fatigue, relating to its association with sensory hypersensitivity; (5) consequences of sensory hypersensitivity, relating to the physical, social and emotional impact of sensory hypersensitivity on patients' lives; and (6) coping strategies, relating to behaviours used to cope with sensory hypersensitivity. CONCLUSIONS Sensory hypersensitivity can have a major impact on patients' physical well-being, return to work and (social) participation after ABI. Characteristics of sensory hypersensitivity vary between patients with ABI. To develop treatments for sensory hypersensitivity, future studies should focus on cognitive (e.g., filtering information) and psychological factors (e.g., coping) in relation to sensory hypersensitivity.
Collapse
Affiliation(s)
- A M de Sain
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L W M Pellikaan
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - J van Voskuilen
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - M Migdis
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - M P J Sommers-Spijkerman
- Department of Rehabilitation, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J M A Visser-Meily
- Department of Rehabilitation, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - I M C Huenges Wajer
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
- Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Thielen H, Tuts N, Lafosse C, Gillebert CR. The Neuroanatomy of Poststroke Subjective Sensory Hypersensitivity. Cogn Behav Neurol 2023; 36:68-84. [PMID: 37026772 DOI: 10.1097/wnn.0000000000000341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/09/2022] [Indexed: 04/08/2023]
Abstract
BACKGROUND Although subjective sensory hypersensitivity is prevalent after stroke, it is rarely recognized by health care providers, and its neural mechanisms are largely unknown. OBJECTIVE To investigate the neuroanatomy of poststroke subjective sensory hypersensitivity as well as the sensory modalities in which subjective sensory hypersensitivity can occur by conducting both a systematic literature review and a multiple case study of patients with subjective sensory hypersensitivity. METHOD For the systematic review, we searched three databases (Web of Science, PubMed, and Scopus) for empirical articles discussing the neuroanatomy of poststroke subjective sensory hypersensitivity in humans. We assessed the methodological quality of the included studies using the case reports critical appraisal tool and summarized the results using a qualitative synthesis. For the multiple case study, we administered a patient-friendly sensory sensitivity questionnaire to three individuals with a subacute right-hemispheric stroke and a matched control group and delineated brain lesions on a clinical brain scan. RESULTS Our systematic literature search resulted in four studies (describing eight stroke patients), all of which linked poststroke subjective sensory hypersensitivity to insular lesions. The results of our multiple case study indicated that all three stroke patients reported an atypically high sensitivity to different sensory modalities. These patients' lesions overlapped with the right anterior insula, the claustrum, and the Rolandic operculum. CONCLUSION Both our systematic literature review and our multiple case study provide preliminary evidence for a role of the insula in poststroke subjective sensory hypersensitivity and suggest that poststroke subjective sensory hypersensitivity can occur in different sensory modalities.
Collapse
Affiliation(s)
- Hella Thielen
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nora Tuts
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Céline Raymond Gillebert
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- TRACE, Centre for Translational Psychological Research, KU Leuven-Hospital East-Limbourgh, Genk, Belgium
| |
Collapse
|
5
|
Marzolla MC, Wijenberg M, Stapert S, Hurks P, Schepers J, van Heugten C. Hypersensitivity to Noise and Light Over 1 Year After Mild Traumatic Brain Injury: A Longitudinal Study on Self-Reported Hypersensitivity and Its Influence on Long-Term Anxiety, Depression, and Quality of Life. J Head Trauma Rehabil 2023; 38:259-267. [PMID: 35997762 DOI: 10.1097/htr.0000000000000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to investigate (1) the prevalence of self-reported sensory hypersensitivity (noise [NS] and light [LS]) over 1 year after mild traumatic brain injury (mTBI) in adults and (2) the impact of NS and LS measured 2 weeks after injury on long-term outcomes 12 months postinjury, while controlling for postconcussion symptoms. SETTING Participants were recruited from 6 hospitals in the south of the Netherlands and were tested 4 times (2 weeks, 3 months, 6 months, and 12 months postinjury), using self-report questionnaires. PARTICIPANTS In total, 186 mTBI participants (diagnosed using WHO [World Health Organization]/EFNS [European Federation of Neurological Societies] criteria at the neurology/emergency department) and 181 participants with a minor orthopedic injury in their extremities (control group). DESIGN An observational, longitudinal, multicenter cohort study. MAIN MEASURES NS and LS items (Rivermead Post-Concussion Symptoms Questionnaire) were used as main outcome variables to determine sensory hypersensitivity symptoms. Additional outcomes included anxiety, depression, health-related quality of life (HRQoL), and life satisfaction. RESULTS There was an elevated prevalence of NS and LS between 2 weeks and 3 months after injury in the mTBI group compared with controls. Approximately 3% of mTBI patients had persistent hypersensitivity symptoms during the whole course of the study. At 12 months postinjury, the mTBI and control groups did not differ in the prevalence of persistent hypersensitivity symptoms. There was no evidence of a predictive value of hypersensitivity within 2 weeks postinjury on anxiety, depression, HRQoL, or life satisfaction, 12 months later after controlling for postconcussion symptoms. CONCLUSIONS These results not only confirm the presence of hypersensitivity symptoms after mTBI in the subacute stage but also provide assurance about the small size of the group that experiences persistent symptoms. Furthermore, there was no evidence that early NS and LS are uniquely associated with long-term emotional and quality-of-life outcomes, over and above general levels of postconcussion symptoms.
Collapse
Affiliation(s)
- Marilien C Marzolla
- Department of Neuropsychology and Psychopharmacology (Ms Marzolla and Drs Stapert, Hurks, and van Heugten), Section of Teaching and Innovation of Learning (Dr Wijenberg), and Department of Methodology and Statistics (Dr Schepers), Faculty of Psychology and Neuroscience, and Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (Dr van Heugten), Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Maastricht, the Netherlands (Ms Marzolla and Dr van Heugten); Department of Brain Injury Rehabilitation, Adelante Rehabilitation Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, the Netherlands (Dr Wijenberg); and Department of Clinical and Medical Psychology, Zuyderland Medical Centre, Sittard-Geleen, the Netherlands (Dr Stapert)
| | | | | | | | | | | |
Collapse
|
6
|
Thielen H, Tuts N, Welkenhuyzen L, Huenges Wajer IMC, Lafosse C, Gillebert CR. Sensory sensitivity after acquired brain injury: A systematic review. J Neuropsychol 2023; 17:1-31. [PMID: 35773750 DOI: 10.1111/jnp.12284] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Patients with acquired brain injury frequently report experiencing sensory stimuli as abnormally under- (sensory hyposensitivity) or overwhelming (sensory hypersensitivity). Although they can negatively impact daily functioning, these symptoms are poorly understood. To provide an overview of the current evidence on atypical sensory sensitivity after acquired brain injury, we conducted a systematic literature review. The primary aim of the review was to investigate the behavioural and neural mechanisms that are associated with self-reported sensory sensitivity. Studies were included when they studied sensory sensitivity in acquired brain injury populations, and excluded when they were not written in English, consisted of non-empirical research, did not study human subjects, studied pain, related sensory sensitivity to peripheral injury or studied patients with a neurodegenerative disorder, meningitis, encephalitis or a brain tumour. The Web of Science, PubMed and Scopus databases were searched for appropriate studies. A qualitative synthesis of the results of the 81 studies that were included suggests that abnormal sensory thresholds and a reduced information processing speed are candidate behavioural mechanisms of atypical subjective sensory sensitivity after acquired brain injury. Furthermore, there was evidence for an association between subjective sensory sensitivity and structural grey or white matter abnormalities, and to functional abnormalities in sensory cortices. However, further research is needed to explore the causation of atypical sensory sensitivity. In addition, there is a need for the development of adequate diagnostic tools. This can significantly advance the quantity and quality of research on the prevalence, aetiology, prognosis and treatment of these symptoms.
Collapse
Affiliation(s)
- Hella Thielen
- Department Brain and Cognition, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Nora Tuts
- Department Brain and Cognition, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Lies Welkenhuyzen
- Department Brain and Cognition, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Department Psychology, Hospital East-Limbourgh, Genk, Belgium.,TRACE, Centre for Translational Psychological Research, KU Leuven - Hospital East-Limbourgh, Genk, Belgium
| | - Irene M C Huenges Wajer
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | | | - Céline R Gillebert
- Department Brain and Cognition, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,TRACE, Centre for Translational Psychological Research, KU Leuven - Hospital East-Limbourgh, Genk, Belgium
| |
Collapse
|
7
|
Faulkner JW, Snell DL, Shepherd D, Theadom A. Turning away from sound: The role of fear avoidance in noise sensitivity following mild traumatic brain injury. J Psychosom Res 2021; 151:110664. [PMID: 34749069 DOI: 10.1016/j.jpsychores.2021.110664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Noise sensitivity (NS) following mild traumatic brain injury (mTBI) is common impacts functioning and outcomes. Recent research suggests psychological factors may have a significant role in the development of NS after mTBI. Psychological interventions have been advocated for to reduce this experience. To be effective, these interventions must aim to target the psychological processes that contribute to this relationship. Fear avoidance holds promise in this regard. The current study aimed to explore the role of fear avoidance in NS and examine its role in mediating the relationship between psychological distress and NS. METHOD Adults (n = 234) diagnosed with mTBI were recruited from outpatient mTBI clinics throughout New Zealand. Participants completed self-report measures of pre-injury mental health status, as well as current post-concussion symptoms, psychological distress (anxiety, stress, depression, fear avoidance and post-traumatic stress symptoms) and functional status upon entry to an mTBI outpatient clinic (M = 8.9, SD = 9.2, post injury). RESULTS A pre-injury mental health diagnosis was associated with NS after mTBI, as were symptoms of anxiety, stress, depression, and post-traumatic stress. Regression analyses revealed that fear avoidance (β = 0.45, p = .01), as well as stress (β = 0.07, p = .01) and PTSD symptoms (β = 0.02, p = .01), made a significant and unique contribution to NS. A series of mediation analyses found that fear avoidance had a significant indirect effect on the relationships between psychological distress and NS. CONCLUSIONS Fear avoidance is related to NS following mTBI. Targeting fear avoidance behaviours and beliefs may represent a treatment target for reducing NS after mTBI.
Collapse
Affiliation(s)
- Josh W Faulkner
- Massey University, PO Box 756, Wellington 6140, New Zealand.
| | - Deborah L Snell
- University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Daniel Shepherd
- TBI Network, Auckland University of Technology, University of Technology, 90 Akoranga Drive, Northcote, Auckland, New Zealand
| | - Alice Theadom
- TBI Network, Auckland University of Technology, University of Technology, 90 Akoranga Drive, Northcote, Auckland, New Zealand
| |
Collapse
|