1
|
Gandhi A, Daigavane S. The Role of Adjunctive Triamcinolone Acetonide in Post-traumatic Vitreoretinal Surgery: Current Insights and Future Perspectives. Cureus 2024; 16:e71040. [PMID: 39525235 PMCID: PMC11543381 DOI: 10.7759/cureus.71040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Post-traumatic vitreoretinal surgery is pivotal for repairing damage to the retina and vitreous body, commonly resulting from blunt or penetrating ocular trauma. Incorporating adjunctive pharmacological agents, particularly triamcinolone acetonide (TA), has gained considerable prominence in optimizing surgical outcomes. TA, a potent corticosteroid, is applied intraoperatively to improve the visualization of vitreous structures and epiretinal membranes, enabling surgeons to perform more precise maneuvers. Furthermore, its anti-inflammatory properties are instrumental in reducing postoperative complications such as macular edema and proliferative vitreoretinopathy (PVR), conditions that could hinder recovery and compromise visual acuity. TA use during vitrectomy enhances surgical precision and contributes to a smoother postoperative recovery. However, concerns surrounding potential side effects, such as steroid-induced ocular hypertension and cataract formation, necessitate careful patient selection and close monitoring throughout its use. Looking ahead, innovations in sustained-release formulations and combination therapies may further augment TA efficacy while reducing associated risks. This review provides current insights into TA application in post-traumatic vitreoretinal surgeries and highlights emerging trends poised to enhance its therapeutic role.
Collapse
Affiliation(s)
- Anand Gandhi
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Kamthan G, Meenink T, Morgan IC, Harvey AA, Lince JL, Smit J, Beelen M, Tsai JC, de Smet MD, Ianchulev T. Microinterventional system for robot-assisted gonioscopic surgery- technical feasibility and preclinical evaluation in synthetic eye models. BMC Ophthalmol 2024; 24:324. [PMID: 39103788 PMCID: PMC11299419 DOI: 10.1186/s12886-024-03595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Preclinical technical feasibility study of robot-assisted microinvasive glaucoma surgery using a novel ophthalmic robot-assisted surgery system. METHODS Feasibility was assessed in synthetic eye models in two stages: Stage I, nonimplantable robot-assisted goniotomy; and Stage II, robot-assisted stent implantation using a trabecular bypass stent. Robot-assisted interventions were subsequently compared to the manual approach. RESULTS Stage I: Two surgeons completed 10 trials each of ab-interno sectoral goniotomy with and without robotic assistance for at least 3 clock hours using a standard goniotomy knife and more than 10 clock hours of extended goniotomy using a flexible, guided goniotomy instrument. Stage II: Trabecular bypass stent deployment was successfully achieved in 100% of the attempts with and without robotic assistance. Surgical time was recorded and compared between the robotic-assisted and the manual approach. CONCLUSIONS A system for robot-assisted microinvasive glaucoma surgery can successfully achieve implantable and nonimplantable interventions in the anterior segment. This is the first known demonstration of the feasibility of robot-assisted glaucoma surgery.
Collapse
Affiliation(s)
- Gautam Kamthan
- New York Eye and Ear Infirmary of Mount Sinai, Research Center, 310 East 14th St, Ste 500 Building, New York, NY, 10003, USA.
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Thijs Meenink
- Preceyes, BV, De Rondom 18, 5612 AP , Eindhoven, Netherlands
| | - Isabella C Morgan
- New York Eye and Ear Infirmary of Mount Sinai, Research Center, 310 East 14th St, Ste 500 Building, New York, NY, 10003, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Andrew A Harvey
- New York Eye and Ear Infirmary of Mount Sinai, Research Center, 310 East 14th St, Ste 500 Building, New York, NY, 10003, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Jorge L Lince
- Panama Eye Center, Balboa Plaza, Ave. Balboa, Panama, 07127, Panama
| | - Jorrit Smit
- Preceyes, BV, De Rondom 18, 5612 AP , Eindhoven, Netherlands
| | - Maarten Beelen
- Preceyes, BV, De Rondom 18, 5612 AP , Eindhoven, Netherlands
| | - James C Tsai
- New York Eye and Ear Infirmary of Mount Sinai, Research Center, 310 East 14th St, Ste 500 Building, New York, NY, 10003, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Marc D de Smet
- New York Eye and Ear Infirmary of Mount Sinai, Research Center, 310 East 14th St, Ste 500 Building, New York, NY, 10003, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Preceyes, BV, De Rondom 18, 5612 AP , Eindhoven, Netherlands
| | - Tsontcho Ianchulev
- New York Eye and Ear Infirmary of Mount Sinai, Research Center, 310 East 14th St, Ste 500 Building, New York, NY, 10003, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
3
|
Kadonosono K, Inoue M, Yanagi Y. Retinal arterial and vein occlusion: is surgery ever indicated? Curr Opin Ophthalmol 2024; 35:210-216. [PMID: 38421954 DOI: 10.1097/icu.0000000000001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW To highlight the recent progression in surgical treatments for central retinal vein occlusion (CRVO) and central retinal artery occlusion (CRAO). RECENT FINDINGS Anti-VEGF treatment, accepted as a primary treatment for CRVO, is unable to effectively treat all types of the diseases. Regarding CRAO, there are not any accepted therapies available. There have however been recent innovations in surgery, such as utilizing robotics-assisted tools in cannulation procedures for central retinal artery occlusion, or micro-cystotomy for refractory macular edema resulting from ischemic CRVO. SUMMARY Refractory macular edema due to CRVO can be treated with aspiration of the fluid found inside the large cysts often seen in edema. The success rate of micro-cystotomy has been reported at 78% in eyes with refractory macular edema. Recent studies have shown that cannulation with tissue plasminogen activator (tPA) is effective for eyes with CRAO due to thrombus.Recent cannulation or micro-cystotomy procedures can be enhanced with the use of robotic tools which allow us to perform this difficult procedure more easily. Newly developed technology, and consequent developments in surgical procedures, will allow us to deal with unmet needs for retinal vessel occlusive diseases.
Collapse
Affiliation(s)
- Kazuaki Kadonosono
- Department of Ophthalmology and Micro-technology, Yokohama City University, School of Medicine, Yokohama, Japan
| | | | | |
Collapse
|
4
|
Wang T, Li H, Pu T, Yang L. Microsurgery Robots: Applications, Design, and Development. SENSORS (BASEL, SWITZERLAND) 2023; 23:8503. [PMID: 37896597 PMCID: PMC10611418 DOI: 10.3390/s23208503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Microsurgical techniques have been widely utilized in various surgical specialties, such as ophthalmology, neurosurgery, and otolaryngology, which require intricate and precise surgical tool manipulation on a small scale. In microsurgery, operations on delicate vessels or tissues require high standards in surgeons' skills. This exceptionally high requirement in skills leads to a steep learning curve and lengthy training before the surgeons can perform microsurgical procedures with quality outcomes. The microsurgery robot (MSR), which can improve surgeons' operation skills through various functions, has received extensive research attention in the past three decades. There have been many review papers summarizing the research on MSR for specific surgical specialties. However, an in-depth review of the relevant technologies used in MSR systems is limited in the literature. This review details the technical challenges in microsurgery, and systematically summarizes the key technologies in MSR with a developmental perspective from the basic structural mechanism design, to the perception and human-machine interaction methods, and further to the ability in achieving a certain level of autonomy. By presenting and comparing the methods and technologies in this cutting-edge research, this paper aims to provide readers with a comprehensive understanding of the current state of MSR research and identify potential directions for future development in MSR.
Collapse
Affiliation(s)
- Tiexin Wang
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Haoyu Li
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
| | - Tanhong Pu
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
| | - Liangjing Yang
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Mechanical Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Pan-Doh N, Sikder S, Woreta FA, Handa JT. Using the language of surgery to enhance ophthalmology surgical education. Surg Open Sci 2023; 14:52-59. [PMID: 37528917 PMCID: PMC10387608 DOI: 10.1016/j.sopen.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Background Currently, surgical education utilizes a combination of the apprentice model, wet-lab training, and simulation, but due to reliance on subjective data, the quality of teaching and assessment can be variable. The "language of surgery," an established concept in engineering literature whose incorporation into surgical education has been limited, is defined as the description of each surgical maneuver using quantifiable metrics. This concept is different from the traditional notion of surgical language, generally thought of as the qualitative definitions and terminology used by surgeons. Methods A literature search was conducted through April 2023 using MEDLINE/PubMed using search terms to investigate wet-lab, virtual simulators, and robotics in ophthalmology, along with the language of surgery and surgical education. Articles published before 2005 were mostly excluded, although a few were included on a case-by-case basis. Results Surgical maneuvers can be quantified by leveraging technological advances in virtual simulators, video recordings, and surgical robots to create a language of surgery. By measuring and describing maneuver metrics, the learning surgeon can adjust surgical movements in an appropriately graded fashion that is based on objective and standardized data. The main contribution is outlining a structured education framework that details how surgical education could be improved by incorporating the language of surgery, using ophthalmology surgical education as an example. Conclusion By describing each surgical maneuver in quantifiable, objective, and standardized terminology, a language of surgery can be created that can be used to learn, teach, and assess surgical technical skill with an approach that minimizes bias. Key message The "language of surgery," defined as the quantification of each surgical movement's characteristics, is an established concept in the engineering literature. Using ophthalmology surgical education as an example, we describe a structured education framework based on the language of surgery to improve surgical education. Classifications Surgical education, robotic surgery, ophthalmology, education standardization, computerized assessment, simulations in teaching. Competencies Practice-Based Learning and Improvement.
Collapse
Affiliation(s)
- Nathan Pan-Doh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shameema Sikder
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fasika A. Woreta
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James T. Handa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Alafaleq M. Robotics and cybersurgery in ophthalmology: a current perspective. J Robot Surg 2023; 17:1159-1170. [PMID: 36637738 PMCID: PMC9838251 DOI: 10.1007/s11701-023-01532-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/08/2023] [Indexed: 01/14/2023]
Abstract
Ophthalmology is one of the most enriched fields, allowing the domain of artificial intelligence to be part of its point of interest in scientific research. The requirement of specialized microscopes and visualization systems presents a challenge to adapting robotics in ocular surgery. Cyber-surgery has been used in other surgical specialties aided by Da Vinci robotic system. This study focuses on the current perspective of using robotics and cyber-surgery in ophthalmology and highlights factors limiting their progression. A review of literature was performed with the aid of Google Scholar, Pubmed, CINAHL, MEDLINE (N.H.S. Evidence), Cochrane, AMed, EMBASE, PsychINFO, SCOPUS, and Web of Science. Keywords: Cybersurgery, Telesurgery, ophthalmology robotics, Da Vinci robotic system, artificial intelligence in ophthalmology, training on robotic surgery, ethics of the use of robots in medicine, legal aspects, and economics of cybersurgery and robotics. 150 abstracts were reviewed for inclusion, and 68 articles focusing on ophthalmology were included for full-text review. Da Vinci Surgical System has been used to perform a pterygium repair in humans and was successful in ex vivo corneal, strabismus, amniotic membrane, and cataract surgery. Gamma Knife enabled effective treatment of uveal melanoma. Robotics used in ophthalmology were: Da Vinci Surgical System, Intraocular Robotic Interventional Surgical System (IRISS), Johns Hopkins Steady-Hand Eye Robot and smart instruments, and Preceyes' B.V. Cybersurgery is an alternative to overcome distance and the shortage of surgeons. However, cost, availability, legislation, and ethics are factors limiting the progression of these fields. Robotic and cybersurgery in ophthalmology are still in their niche. Cost-effective studies are needed to overcome the delay. Technologies, such as 5G and Tactile Internet, are required to help reduce resource scheduling problems in cybersurgery. In addition, prototype development and the integration of artificial intelligence applications could further enhance the safety and precision of ocular surgery.
Collapse
Affiliation(s)
- Munirah Alafaleq
- Ophthalmology Department, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
- Artificial Intelligence and Business School, 18 Rue du Dôme, 92100, Boulogne Billancourt, France.
- Ophthalmology Department and Centre for Rare Ophthalmological Diseases OPHTARA, Necker Enfants-Malades University Hospital, AP-HP, University Paris Cité, Paris, France.
| |
Collapse
|
7
|
Ebrahimi A, Sefati S, Gehlbach P, Taylor RH, Iordachita I. Simultaneous Online Registration-Independent Stiffness Identification and Tip Localization of Surgical Instruments in Robot-assisted Eye Surgery. IEEE T ROBOT 2023; 39:1373-1387. [PMID: 37377922 PMCID: PMC10292740 DOI: 10.1109/tro.2022.3201393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Notable challenges during retinal surgery lend themselves to robotic assistance which has proven beneficial in providing a safe steady-hand manipulation. Efficient assistance from the robots heavily relies on accurate sensing of surgery states (e.g. instrument tip localization and tool-to-tissue interaction forces). Many of the existing tool tip localization methods require preoperative frame registrations or instrument calibrations. In this study using an iterative approach and by combining vision and force-based methods, we develop calibration- and registration-independent (RI) algorithms to provide online estimates of instrument stiffness (least squares and adaptive). The estimations are then combined with a state-space model based on the forward kinematics (FWK) of the Steady-Hand Eye Robot (SHER) and Fiber Brag Grating (FBG) sensor measurements. This is accomplished using a Kalman Filtering (KF) approach to improve the deflected instrument tip position estimations during robot-assisted eye surgery. The conducted experiments demonstrate that when the online RI stiffness estimations are used, the instrument tip localization results surpass those obtained from pre-operative offline calibrations for stiffness.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Department of Mechanical Engineering and also Laboratory for Computational Sensing and Robotics at the Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shahriar Sefati
- Department of Mechanical Engineering and also Laboratory for Computational Sensing and Robotics at the Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter Gehlbach
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD, 21287, USA
| | - Russell H Taylor
- Department of Mechanical Engineering and also Laboratory for Computational Sensing and Robotics at the Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Computer Science and also Laboratory for Computational Sensing and Robotics at the Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Iulian Iordachita
- Department of Mechanical Engineering and also Laboratory for Computational Sensing and Robotics at the Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
8
|
Varma S, Balaratnasingam C. Imaging and robotics: The future of epiretinal membrane management. Clin Exp Ophthalmol 2022; 50:985-987. [DOI: 10.1111/ceo.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Shivesh Varma
- Department of Ophthalmology Sir Charles Gairdner Hospital Nedlands Western Australia Australia
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute) The University of Western Australia Perth Western Australia Australia
| | - Chandrakumar Balaratnasingam
- Department of Ophthalmology Sir Charles Gairdner Hospital Nedlands Western Australia Australia
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute) The University of Western Australia Perth Western Australia Australia
| |
Collapse
|
9
|
Muacevic A, Adler JR. Robotic Integration in the Field of Opthalmology and Its Prospects in India. Cureus 2022; 14:e30482. [PMID: 36415349 PMCID: PMC9674111 DOI: 10.7759/cureus.30482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
In this paper, an overview of the integration of robotic techniques into surgical fields of ophthalmology is described and the details about the latest advancements and future potentials associated with it are presented. The eye is a small, enclosed space that does not tolerate the misplacement of instruments that general surgery can tolerate. As the retina doesn't regenerate, it is of paramount importance to avoid injury. Furthermore, there are additional limitations of unassisted human hands in terms of dexterity, tremor, and precision in positioning instruments in the eye. Robotics has become a promising solution to these human challenges. The emergence of robotic technology into the domain of rapidly advancing micro-invasive surgery has reduced discomfort in patients and enhanced safety, capabilities, and outcomes. With the arrival of the Femtosecond laser system for robotic cataract surgery in several hospitals in India, the paradigm of robotic surgery has shifted as people started to accept and apply it. Although there is still much to learn in this area, there is growing interest in creating gadgets that perform complete surgical procedures. The fundamental objective of these surgeries would be to increase speed and efficiency without compromising the capacity to increase precision. Major criteria include an acceptable range of motion, the capacity to switch instruments mid-surgery, and simultaneous manipulation of the surgical instrument. Robotic surgery is an already well-established technological advancement employed across the globe by leading surgeons in their fields but its curve in ophthalmology is still under supervision. Just like every other advance, robotics has its own set of disadvantages including but not limited to the costs, limited availability, and long learning curve. Nonetheless, this paper doesn't intend to promote the replacement of surgeons with technology, it's intended to get aware of the utilities of technology to improve care and deliver personal compassionate care. This quest is for the idea of robotics in the ocular field and improvisation of the field.
Collapse
|
10
|
Ramamurthy SR, Dave VP. Robotics in Vitreo-Retinal Surgery. Semin Ophthalmol 2022; 37:795-800. [PMID: 35576476 DOI: 10.1080/08820538.2022.2075705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Modern vitreo-retinal surgery has scaled new frontiers with the advent of better instrumentation. However, physiological tremors, intraocular dexterity and difficulty in visualization hamper minimally invasive retinal surgery. Robotics has the potential to overcome these limitations and improve surgical outcomes. This review aims to provide a comprehensive summary of the advances made in the field of robotics in vitreo-retinal surgery. METHODS This review included 30 studies comprising randomized control trials, nonrandomized comparative studies and systematic reviews on the application of robotics in vitreo-retinal surgery. RESULTS Robotic systems presently available in vitreo-retinal surgery can be broadly classified based on the extent of automation into five categories: robot-assisted, co-manipulated, tele-operated, partially/fully automated and magnetically controlled devices. Key features of individual devices are highlighted in this review. Robotic assistance in vitreo-retinal surgery can maximize performance for routine procedures, enable high-precision procedures such as targeted gene therapy and retinal vein cannulation, improve ergonomics, and revolutionize tele-surgery. Cost limitations and compatibility with available surgical systems are the barriers in implementation of robotics in retinal microsurgery. CONCLUSION This review provides a concise summary of the available robotic systems in vitreo-retinal surgery, advantages over conventional systems, current applications and future implications. Robotics is a rapidly evolving field, which holds great promise in the future of vitreo-retinal surgery.
Collapse
Affiliation(s)
- Srishti Raksheeth Ramamurthy
- Smt. Kanuri Santhamma Center for vitreoretinal diseases, Anant Bajaj Retina Institute Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India.,Fellow, Retina and Vitreous, Standard Chartered Academy for Eye Care Education Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| | - Vivek Pravin Dave
- Smt. Kanuri Santhamma Center for vitreoretinal diseases, Anant Bajaj Retina Institute Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
11
|
Cehajic-Kapetanovic J, Xue K, Edwards TL, Meenink TC, Beelen MJ, Naus GJ, de Smet MD, MacLaren RE. First-in-Human Robot-Assisted Subretinal Drug Delivery Under Local Anesthesia. Am J Ophthalmol 2022; 237:104-113. [PMID: 34788592 DOI: 10.1016/j.ajo.2021.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To report the results of a first-in-human study using a robotic device to assist subretinal drug delivery in patients undergoing vitreoretinal surgery for macular hemorrhage. DESIGN Double-armed, randomized controlled surgical trial (ClinicalTrials.gov identifier: NCT03052881). METHODS The study was performed at the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom. In total, 12 participants were recruited-6 in the robot-assisted and 6 in the control manual surgery arm according to the prespecified inclusion and exclusion criteria. All subjects presented with acute loss of vision owing to a subfoveal hemorrhage secondary to neovascular age-related macular degeneration. After standard vitrectomy, intraoperative optical coherence tomography-guided subretinal injection of tissue plasminogen activator (TPA) was performed by either robot-assisted or conventional manual technique under local anesthesia. The robotic part of the procedure involved advancement of a cannula through the retina and stabilizing it during foot-controlled injection of up to 100 µL of TPA solution. We assessed surgical success, duration of surgery, adverse events, and tolerability of surgery under local anesthesia. RESULTS The procedure was well tolerated by all participants and safely performed in all cases. Total duration of surgery, time taken to complete the injection, and retinal microtrauma were similar between the groups and not clinically significant. Subretinal hemorrhage was successfully displaced at 1 month postintervention, except for 1 control subject, and the median gain in visual acuity was similar in both arms. CONCLUSIONS This first-in-human study demonstrates the feasibility and safety of high-precision robot-assisted subretinal drug delivery as part of the surgical management of submacular hemorrhage, simulating its potential future application in gene or cell therapy.
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, University of Oxford (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; and Preceyes BV (T.C.M., M.J.B., G.J.N., M.D.S.), Eindhoven, the Netherlands
| | - Kanmin Xue
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, University of Oxford (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; and Preceyes BV (T.C.M., M.J.B., G.J.N., M.D.S.), Eindhoven, the Netherlands
| | - Thomas L Edwards
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, University of Oxford (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; and Preceyes BV (T.C.M., M.J.B., G.J.N., M.D.S.), Eindhoven, the Netherlands
| | - Thijs C Meenink
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, University of Oxford (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; and Preceyes BV (T.C.M., M.J.B., G.J.N., M.D.S.), Eindhoven, the Netherlands
| | - Maarten J Beelen
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, University of Oxford (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; and Preceyes BV (T.C.M., M.J.B., G.J.N., M.D.S.), Eindhoven, the Netherlands
| | - Gerrit J Naus
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, University of Oxford (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; and Preceyes BV (T.C.M., M.J.B., G.J.N., M.D.S.), Eindhoven, the Netherlands
| | - Marc D de Smet
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, University of Oxford (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; and Preceyes BV (T.C.M., M.J.B., G.J.N., M.D.S.), Eindhoven, the Netherlands
| | - Robert E MacLaren
- From the Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, University of Oxford (J.C.-K., K.X., T.L.E., R.E.M.), Oxford, United Kingdom; and Preceyes BV (T.C.M., M.J.B., G.J.N., M.D.S.), Eindhoven, the Netherlands
| |
Collapse
|
12
|
Jacobsen MF, Konge L, Cour M, Sørensen RB, Park YS, Thomsen ASS. The learning curve of robot-assisted vitreoretinal surgery - A randomized trial in a simulated setting. Acta Ophthalmol 2021; 99:e1509-e1516. [PMID: 33650326 DOI: 10.1111/aos.14822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To investigate the learning curve of robot-assisted vitreoretinal surgery compared to manual surgery in a simulated setting. METHODS The study was designed as a randomized controlled longitudinal study. Eight ophthalmic trainees in the 1st or 2nd year of their specialization were included. The participants were randomized to either manual or robot-assisted surgery. Participants completed repetitions of a test consisting of three vitreoretinal modules on the Eyesi virtual reality simulator. The primary outcome measure was time to learning curve plateau (minutes) for total test score. The secondary outcome measures were instrument movement (mm), tissue treatment (mm2 ) and time with instruments inserted (seconds). RESULTS There was no significant difference in time to learning curve plateau for robot-assisted vitreoretinal surgery compared to manual. Robot-assisted vitreoretinal surgery was associated with less instrument movements (i.e. improved precision), -0.91 standard deviation (SD) units (p < 0.001). Furthermore, robot-assisted vitreoretinal surgery was associated with less tissue damage when compared to manual surgery, -0.94 SD units (p = 0.002). Lastly, robot-assisted vitreoretinal surgery was slower than manual surgery, 0.93 SD units (p < 0.001). CONCLUSIONS There was no significant difference between the lengths of the learning curves for robot-assisted vitreoretinal surgery compared to manual surgery. Robot-assisted vitreoretinal surgery was more precise, associated with less tissue damage, and slower.
Collapse
Affiliation(s)
- Mads F. Jacobsen
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Copenhagen Academy for Medical Education and Simulation Centre for HR Copenhagen Denmark
| | - Lars Konge
- Copenhagen Academy for Medical Education and Simulation Centre for HR Copenhagen Denmark
| | - Morten Cour
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
| | - Rasmus B. Sørensen
- Copenhagen Academy for Medical Education and Simulation Centre for HR Copenhagen Denmark
| | - Yoon Soo Park
- Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Ann Sofia S. Thomsen
- Department of Ophthalmology Rigshospitalet Glostrup Denmark
- Copenhagen Academy for Medical Education and Simulation Centre for HR Copenhagen Denmark
| |
Collapse
|
13
|
Do People Trust in Robot-Assisted Surgery? Evidence from Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312519. [PMID: 34886244 PMCID: PMC8657248 DOI: 10.3390/ijerph182312519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
(1) Background: The goal of the paper was to establish the factors that influence how people feel about having a medical operation performed on them by a robot. (2) Methods: Data were obtained from a 2017 Flash Eurobarometer (number 460) of the European Commission with 27,901 citizens aged 15 years and over in the 28 countries of the European Union. Logistic regression (odds ratios, OR) to model the predictors of trust in robot-assisted surgery was calculated through motivational factors, using experience and sociodemographic independent variables. (3) Results: The results obtained indicate that, as the experience of using robots increases, the predictive coefficients related to information, attitude, and perception of robots become more negative. Furthermore, sociodemographic variables played an important predictive role. The effect of experience on trust in robots for surgical interventions was greater among men, people between 40 and 54 years old, and those with higher educational levels. (4) Conclusions: The results show that trust in robots goes beyond rational decision-making, since the final decision about whether it should be a robot that performs a complex procedure like a surgical intervention depends almost exclusively on the patient’s wishes.
Collapse
|
14
|
Iskander M, Ogunsola T, Ramachandran R, McGowan R, Al-Aswad LA. Virtual Reality and Augmented Reality in Ophthalmology: A Contemporary Prospective. Asia Pac J Ophthalmol (Phila) 2021; 10:244-252. [PMID: 34383716 PMCID: PMC9167643 DOI: 10.1097/apo.0000000000000409] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Most published systematic reviews have focused on the use of virtual reality (VR)/augmented reality (AR) technology in ophthalmology as it relates to surgical training. To date, this is the first review that investigates the current state of VR/AR technology applied more broadly to the entire field of ophthalmology. METHODS PubMed, Embase, and CINAHL databases were searched systematically from January 2014 through December 1, 2020. Studies that discussed VR and/or AR as it relates to the field of ophthalmology and provided information on the technology used were considered. Abstracts, non-peer-reviewed literature, review articles, studies that reported only qualitative data, and studies without English translations were excluded. RESULTS A total of 77 studies were included in this review. Of these, 28 evaluated the use of VR/AR in ophthalmic surgical training/assessment and guidance, 7 in clinical training, 23 in diagnosis/screening, and 19 in treatment/therapy. 15 studies used AR, 61 used VR, and 1 used both. Most studies focused on the validity and usability of novel technologies. CONCLUSIONS Ophthalmology is a field of medicine that is well suited for the use of VR/AR. However, further longitudinal studies examining the practical feasibility, efficacy, and safety of such novel technologies, the cost-effectiveness, and medical/legal considerations are still needed. We believe that time will indeed foster further technological advances and lead to widespread use of VR/AR in routine ophthalmic practice.
Collapse
Affiliation(s)
- Mina Iskander
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, US
| | - Titilola Ogunsola
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, US
| | - Rithambara Ramachandran
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, US
| | - Richard McGowan
- Department of Epidemiology and Health Promotion, NYU College of Dentistry, New York, New York, US
| | - Lama A. Al-Aswad
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, US
- Department of Population Health, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, US
| |
Collapse
|
15
|
Ebrahimi A, Roizenblatt M, Patel N, Gehlbach P, Iordachita I. Auditory Feedback Effectiveness for Enabling Safe Sclera Force in Robot-Assisted Vitreoretinal Surgery: a Multi-User Study. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2021; 2020. [PMID: 34336369 DOI: 10.1109/iros45743.2020.9341350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Robot-assisted retinal surgery has become increasingly prevalent in recent years in part due to the potential for robots to help surgeons improve the safety of an immensely delicate and difficult set of tasks. The integration of robots into retinal surgery has resulted in diminished surgeon perception of tool-to-tissue interaction forces due to robot's stiffness. The tactile perception of these interaction forces (sclera force) has long been a crucial source of feedback for surgeons who rely on them to guide surgical maneuvers and to prevent damaging forces from being applied to the eye. This problem is exacerbated when there are unfavorable sclera forces originating from patient movements (dynamic eyeball manipulation) during surgery which may cause the sclera forces to increase even drastically. In this study we aim at evaluating the efficacy of providing warning auditory feedback based on the level of sclera force measured by force sensing instruments. The intent is to enhance safety during dynamic eye manipulations in robot-assisted retinal surgery. The disturbances caused by lateral movement of patient's head are simulated using a piezo-actuated linear stage. The Johns Hopkins Steady-Hand Eye Robot (SHER), is then used in a multi-user experiment. Twelve participants are asked to perform a mock retinal surgery by following painted vessels inside an eye phantom using a force sensing instrument while auditory feedback is provided. The results indicate that the users are able to handle the eye motion disturbances while maintaining the sclera forces within safe boundaries when audio feedback is provided.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Mechanical Engineering Department and Laboratory for Computational Sensing and Robotics (LCSR) at the Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Marina Roizenblatt
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD 21287 USA.,Federal University of São Paulo, São Paulo, 04023-062 Brazil
| | - Niravkumar Patel
- Mechanical Engineering Department and Laboratory for Computational Sensing and Robotics (LCSR) at the Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter Gehlbach
- Federal University of São Paulo, São Paulo, 04023-062 Brazil
| | - Iulian Iordachita
- Mechanical Engineering Department and Laboratory for Computational Sensing and Robotics (LCSR) at the Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
16
|
Affiliation(s)
- Marc D. de Smet
- Department of Ophthalmology, University of Leiden, Eindhoven, The Netherlands
- Retina service, MIOS Sa, Lausanne, Switzerland
- Preceyes BV, Eindhoven, The Netherlands
| |
Collapse
|