1
|
Zhang Y, Xu M, He H, Ren S, Chen X, Zhang Y, An J, Ren X, Zhang X, Zhang M, Liu Z, Li X. Proteomic analysis of aqueous humor reveals novel regulators of diabetic macular edema. Exp Eye Res 2024; 239:109724. [PMID: 37981180 DOI: 10.1016/j.exer.2023.109724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Diabetic macular edema (DME) is the most common cause of blindness in patients with diabetic retinopathy. To investigate the proteomic profiles of the aqueous humor (AH) of individuals with diabetic macular edema (DME), AH samples were collected from patients with non-diabetes mellitus (NDM), DM, nonproliferative diabetic retinopathy (NPDR), and DME. We performed comparative proteomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses. We identified 425 proteins in these AH samples, of which 113 showed changes in expression in DME compared with NDM, 95 showed changes in expression in DME vs. DM, and 84 showed changes in expression in DME compared with NPDR. The bioinformatics analysis suggested that DME is closely associated with platelet degranulation, oxidative stress-related pathway, and vascular-related pathways. Upregulation of haptoglobin (HP) and downregulation of fibrillin 1 (FBN1) were validated by ELISA. Receiver operating characteristic (ROC) analysis showed that HP and FBN1 could distinguish DME from NPDR with areas under the curve of 0.987 (p = 0.00608) and 0.791 (p = 0.00629), respectively. The findings provide potential clues for further analysis of the molecular mechanisms and the development of new treatments for DME. HP and FBN1 may be potential key proteins and therapeutic targets in human DME. The proteomics dataset generated has been deposited to the ProteomeXchange/iProX Consortium with Identifier: PXD033404/IPX0004353001.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xiangtai, Hebei, China
| | - Manhong Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hongbo He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Shaojie Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xin Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jinying An
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xinjun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Minglian Zhang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xiangtai, Hebei, China
| | - Zhiqiang Liu
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xiangtai, Hebei, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
2
|
Wu H, Wu H, Shi L, Yuan X, Yin Y, Yuan M, Zhou Y, Hu Q, Jiang K, Dong J. The Association of Haptoglobin Gene Variants and Retinopathy in Type 2 Diabetic Patients: A Meta-Analysis. J Diabetes Res 2017; 2017:2195059. [PMID: 28758129 PMCID: PMC5512055 DOI: 10.1155/2017/2195059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
AIMS/INTRODUCTION To collectively evaluate the association between haptoglobin (Hp) gene variants and diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM). METHODS A comprehensive literature review was performed for eligible studies. After inclusion and exclusion selection as well as quality assessment, those studies meeting quality standards were included. In this study, diabetic patients with retinopathy were selected as the case group and those ones without DR were treated as the control group. The recessive model, allele model, additive model, heterozygote model, and homozygote model were utilized to investigate the association of three Hp gene variants and DR. Subgroup analysis on different severity of DR including nonproliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR) was also conducted. RESULTS Six trials from different regions were finally included. A total of 1145 subjects containing 564 T2DM patients with retinopathy were included. The recessive model, allele model, additive model, and homozygote model results showed that Hp gene variants were not associated with DR, NPDR, and PDR. However, the heterozygote model indicated the association of Hp gene variants with DR. CONCLUSIONS No association was found between the Hp gene variants and PDR and NPDR. More studies are required to verify these findings.
Collapse
Affiliation(s)
- Huiqun Wu
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, China
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Huan Wu
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, China
| | - Lili Shi
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, China
| | - Xinlu Yuan
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ying Yin
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, China
| | - Mingjie Yuan
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, China
| | - Yushan Zhou
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, China
| | - Qianwen Hu
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, China
| | - Kui Jiang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, China
- *Kui Jiang:
| | - Jiancheng Dong
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
3
|
Costacou T, Levy AP. Haptoglobin genotype and its role in diabetic cardiovascular disease. J Cardiovasc Transl Res 2012; 5:423-35. [PMID: 22447230 DOI: 10.1007/s12265-012-9361-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/08/2012] [Indexed: 02/07/2023]
Abstract
Over the past decade, several longitudinal epidemiological studies have brought attention to the haptoglobin genotype and its importance in determining diabetic vascular disease risk. This manuscript presents an overview of the biology of the haptoglobin genotype and reviews the literature concerning its role in the development of cardiovascular disease among individuals with diabetes mellitus.
Collapse
Affiliation(s)
- Tina Costacou
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|