1
|
Nakayama LF, Zago Ribeiro L, Malerbi FK, Regatieri CS. Artificial intelligence, data sharing, and privacy for retinal imaging under Brazilian Data Protection Law. Int J Retina Vitreous 2025; 11:41. [PMID: 40200349 PMCID: PMC11980135 DOI: 10.1186/s40942-024-00596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/04/2024] [Indexed: 04/10/2025] Open
Abstract
The integration of artificial intelligence (AI) in healthcare has revolutionized various medical domains, including radiology, intensive care, and ophthalmology. However, the increasing reliance on AI-driven systems raises concerns about bias, particularly when models are trained on non-representative data, leading to skewed outcomes that disproportionately affect minority groups. Addressing bias is essential for ensuring equitable healthcare, necessitating the development and validation of AI models within specific populations. This viewpoint paper explores the critical role of data in AI development, emphasizing the importance of creating representative datasets to mitigate disparities. It discusses the challenges of data bias, the need for local validation of AI algorithms, and the misconceptions surrounding retinal imaging in ophthalmology. Additionally, highlights the significance of publicly available datasets in research and education, particularly the underrepresentation of low- and middle-income countries in such datasets. The Brazilian General Data Protection Law is also examined, focusing on its implications for research and data sharing, including the legal and ethical measures required to safeguard data integrity and privacy. Finally, the manuscript underscores the importance of adhering to the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) to enhance data usability and support responsible AI development in healthcare.
Collapse
Affiliation(s)
- Luis Filipe Nakayama
- Department of Ophthalmology, São Paulo Federal University, St., 821, Vila Clementino, São Paulo, 04023-062, Brazil.
| | - Lucas Zago Ribeiro
- Department of Ophthalmology, São Paulo Federal University, St., 821, Vila Clementino, São Paulo, 04023-062, Brazil
| | - Fernando Korn Malerbi
- Department of Ophthalmology, São Paulo Federal University, St., 821, Vila Clementino, São Paulo, 04023-062, Brazil
| | - Caio Saito Regatieri
- Department of Ophthalmology, São Paulo Federal University, St., 821, Vila Clementino, São Paulo, 04023-062, Brazil
| |
Collapse
|
2
|
Quon JC, Long CP, Halfpenny W, Chuang A, Cai CX, Baxter SL, Daketi V, Schmitz A, Bahroos N, Xu BY, Toy BC. Implementing a Common Data Model in Ophthalmology: Mapping Structured Electronic Health Record Ophthalmic Examination Data to Standard Vocabularies. OPHTHALMOLOGY SCIENCE 2025; 5:100666. [PMID: 39896425 PMCID: PMC11783105 DOI: 10.1016/j.xops.2024.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025]
Abstract
Objective To identify and characterize concept coverage gaps of ophthalmology examination data elements within the Cerner Millennium electronic health record (EHR) implementations by the Observational Health Data Sciences and Informatics Observational Medical Outcomes Partnership (OMOP) common data model (CDM). Design Analysis of data elements in EHRs. Subjects Not applicable. Methods Source eye examination data elements from the default Cerner Model Experience EHR and a local implementation of the Cerner Millennium EHR were extracted, classified into one of 8 subject categories, and mapped to the semantically closest standard concept in the OMOP CDM. Mappings were categorized as exact, if the data element and OMOP concept represented equivalent information, wider, if the OMOP concept was missing conceptual granularity, narrower, if the OMOP concept introduced excess information, and unmatched, if no standard concept adequately represented the data element. Descriptive statistics and qualitative analysis were used to describe the concept coverage for each subject category. Main Outcome Measures Concept coverage gaps in 8 ophthalmology subject categories of data elements by the OMOP CDM. Results There were 409 and 947 ophthalmology data elements in the default and local Cerner modules, respectively. Of the 409 mappings in the default Cerner module, 25% (n = 102) were exact, 53% (n = 217) were wider, 3% (n = 11) were narrower, and 19% (n = 79) were unmatched. In the local Cerner module, 18% (n = 173) of mappings were exact, 54% (n = 514) were wider, 1% (n = 10) were narrower, and 26% (n = 250) were unmatched. The largest coverage gaps were seen in the local Cerner module under the visual acuity, sensorimotor testing, and refraction categories, with 95%, 95%, and 81% of data elements in each respective category having mappings that were not exact. Concept coverage gaps spanned all 8 categories in both EHR implementations. Conclusions Considerable coverage gaps by the OMOP CDM exist in all areas of the ophthalmology examination, which should be addressed to improve the OMOP CDM's effectiveness in ophthalmic research. We identify specific subject categories that may benefit from increased granularity in the OMOP CDM and provide suggestions for facilitating consistency of standard concepts, with the goal of improving data standards in ophthalmology. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Justin C. Quon
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christopher P. Long
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - William Halfpenny
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Amy Chuang
- Southern California Clinical and Translational Science Institute, Los Angeles, California
| | - Cindy X. Cai
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sally L. Baxter
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Vamsi Daketi
- Department of Information Technology, Keck Medicine of USC, Los Angeles, California
| | - Amanda Schmitz
- Department of Information Technology, Keck Medicine of USC, Los Angeles, California
| | - Neil Bahroos
- Southern California Clinical and Translational Science Institute, Los Angeles, California
| | - Benjamin Y. Xu
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brian C. Toy
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
3
|
Hallaj S, Khawaja AP, Rodrigues IAS, Boland MV, Brown EN, Chen A, Stagg BC, Stein JD, Sun CQ, Mahe-Cook AL, Swaminathan SS, Wang SY, Xu BY, Weinreb RN, Baxter SL. Gap Analysis of Glaucoma Examination Concept Representations within Standard Systemized Nomenclature of Medicine - Clinical Terms. Ophthalmol Glaucoma 2025; 8:83-91. [PMID: 39147325 PMCID: PMC11781150 DOI: 10.1016/j.ogla.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE/PURPOSE Standardization of eye care data is important for clinical interoperability and research. We aimed to address gaps in the representations of glaucoma examination concepts within Systemized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the preferred terminology of the American Academy of Ophthalmology. DESIGN Study of data elements. METHODS Structured eye examination data fields from 2 electronic health records (EHR) systems (Epic Systems and Medisoft) were compared against existing SNOMED-CT codes for concepts representing glaucoma examination findings. Glaucoma specialists from multiple institutions were surveyed to identify high-priority gaps in representation, which were discussed among the SNOMED International Eye Care Clinical Reference Group. Proposals for new codes to address the gaps were formulated and submitted for inclusion in SNOMED-CT. MAIN OUTCOME MEASURES Gaps in SNOMED-CT glaucoma examination concept representations. RESULTS We identified several gaps in SNOMED-CT regarding glaucoma examination concepts. A survey of glaucoma specialists identified high-priority data elements within the categories of tonometry and gonioscopy. For tonometry, there was consensus that we need to define new codes related to maximum intraocular pressure (IOP) and target IOP and delineate all methods of measuring IOP. These new codes were proposed and successfully added to SNOMED-CT for future use. Regarding gonioscopy, the current terminology did not include the ability to denote the gonioscopic grading system used (e.g., Shaffer or Spaeth), degree of angle pigmentation, iris configuration (except for plateau iris), and iris approach. There was also no ability to specify eye laterality or angle quadrant for gonioscopic findings. We proposed a framework for representing gonioscopic findings as observable entities in SNOMED-CT. CONCLUSION There are existing gaps in the standardized representation of findings related to tonometry and gonioscopy within SNOMED-CT. These are important areas for evaluating clinical outcomes and enabling secondary use of EHR data for glaucoma research. This international multi-institutional collaborative process enabled identification of gaps, prioritization, and development of data standards to address these gaps. Addressing these gaps and augmenting SNOMED-CT coverage of glaucoma examination findings could enhance clinical documentation and future research efforts related to glaucoma. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Shahin Hallaj
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, California; Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California; Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, California
| | - Anthony P Khawaja
- National Institute for Health and Care Research Biomedical Research Centre, Moorfields Eye Hospital National Health Service Foundation Trust and University College London Institute of Ophthalmology, London, UK
| | - Ian A S Rodrigues
- Department of Ophthalmology, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Michael V Boland
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Eric N Brown
- Department of Ophthalmology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Aiyin Chen
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Brian C Stagg
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Joshua D Stein
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan
| | - Catherine Q Sun
- Department of Ophthalmology (C.Q.S.), University of California, San Francisco, California; F.I. Proctor Foundation (C.Q.S.), University of California, San Francisco, California
| | | | - Swarup S Swaminathan
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Sophia Y Wang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
| | - Benjamin Y Xu
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine at the University of Southern California, Los Angeles, California
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, California
| | - Sally L Baxter
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, California; Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California; Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, California.
| |
Collapse
|
4
|
Christopher M, Hallaj S, Jiravarnsirikul A, Baxter SL, Zangwill LM. Novel Technologies in Artificial Intelligence and Telemedicine for Glaucoma Screening. J Glaucoma 2024; 33:S26-S32. [PMID: 38506792 DOI: 10.1097/ijg.0000000000002367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE To provide an overview of novel technologies in telemedicine and artificial intelligence (AI) approaches for cost-effective glaucoma screening. METHODS/RESULTS A narrative review was performed by summarizing research results, recent developments in glaucoma detection and care, and considerations related to telemedicine and AI in glaucoma screening. Telemedicine and AI approaches provide the opportunity for novel glaucoma screening programs in primary care, optometry, portable, and home-based settings. These approaches offer several advantages for glaucoma screening, including increasing access to care, lowering costs, identifying patients in need of urgent treatment, and enabling timely diagnosis and early intervention. However, challenges remain in implementing these systems, including integration into existing clinical workflows, ensuring equity for patients, and meeting ethical and regulatory requirements. Leveraging recent work towards standardized data acquisition as well as tools and techniques developed for automated diabetic retinopathy screening programs may provide a model for a cost-effective approach to glaucoma screening. CONCLUSION Leveraging novel technologies and advances in telemedicine and AI-based approaches to glaucoma detection show promise for improving our ability to detect moderate and advanced glaucoma in primary care settings and target higher individuals at high risk for having the disease.
Collapse
Affiliation(s)
- Mark Christopher
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center
- Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute
| | - Shahin Hallaj
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center
- Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute
| | - Anuwat Jiravarnsirikul
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center
- Department of Medicine, Division of Biomedical Informatics, University of California San Diego, La Jolla, CA
| | - Sally L Baxter
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center
- Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute
- Department of Medicine, Division of Biomedical Informatics, University of California San Diego, La Jolla, CA
| | - Linda M Zangwill
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center
- Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute
| |
Collapse
|
5
|
Rozhyna A, Somfai GM, Atzori M, DeBuc DC, Saad A, Zoellin J, Müller H. Exploring Publicly Accessible Optical Coherence Tomography Datasets: A Comprehensive Overview. Diagnostics (Basel) 2024; 14:1668. [PMID: 39125544 PMCID: PMC11312046 DOI: 10.3390/diagnostics14151668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve as a foundation upon which algorithms learn and make predictions. Thus, the importance of data cannot be underestimated, and clinically corresponding datasets are required. Many researchers face a lack of medical data due to limited access, privacy concerns, or the absence of available annotations. One of the most widely used diagnostic tools in ophthalmology is Optical Coherence Tomography (OCT). Addressing the data availability issue is crucial for enhancing AI applications in the field of OCT diagnostics. This review aims to provide a comprehensive analysis of all publicly accessible retinal OCT datasets. Our main objective is to compile a list of OCT datasets and their properties, which can serve as an accessible reference, facilitating data curation for medical image analysis tasks. For this review, we searched through the Zenodo repository, Mendeley Data repository, MEDLINE database, and Google Dataset search engine. We systematically evaluated all the identified datasets and found 23 open-access datasets containing OCT images, which significantly vary in terms of size, scope, and ground-truth labels. Our findings indicate the need for improvement in data-sharing practices and standardized documentation. Enhancing the availability and quality of OCT datasets will support the development of AI algorithms and ultimately improve diagnostic capabilities in ophthalmology. By providing a comprehensive list of accessible OCT datasets, this review aims to facilitate better utilization and development of AI in medical image analysis.
Collapse
Affiliation(s)
- Anastasiia Rozhyna
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO), 3960 Sierre, Switzerland
- Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
| | - Gábor Márk Somfai
- Department of Ophthalmology, Stadtspital Zürich, 8063 Zurich, Switzerland
- Spross Research Institute, 8063 Zurich, Switzerland
| | - Manfredo Atzori
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO), 3960 Sierre, Switzerland
- Department of Neuroscience, University of Padua, 35121 Padova, Italy
| | - Delia Cabrera DeBuc
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Amr Saad
- Department of Ophthalmology, Stadtspital Zürich, 8063 Zurich, Switzerland
- Spross Research Institute, 8063 Zurich, Switzerland
| | - Jay Zoellin
- Department of Ophthalmology, Stadtspital Zürich, 8063 Zurich, Switzerland
- Spross Research Institute, 8063 Zurich, Switzerland
| | - Henning Müller
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO), 3960 Sierre, Switzerland
- Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
- The Sense Research and Innovation Center, 1007 Lausanne, Switzerland
| |
Collapse
|
6
|
Chen JS, Copado IA, Vallejos C, Kalaw FGP, Soe P, Cai CX, Toy BC, Borkar D, Sun CQ, Shantha JG, Baxter SL. Variations in Electronic Health Record-Based Definitions of Diabetic Retinopathy Cohorts: A Literature Review and Quantitative Analysis. OPHTHALMOLOGY SCIENCE 2024; 4:100468. [PMID: 38560278 PMCID: PMC10973665 DOI: 10.1016/j.xops.2024.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 04/04/2024]
Abstract
Purpose Use of the electronic health record (EHR) has motivated the need for data standardization. A gap in knowledge exists regarding variations in existing terminologies for defining diabetic retinopathy (DR) cohorts. This study aimed to review the literature and analyze variations regarding codified definitions of DR. Design Literature review and quantitative analysis. Subjects Published manuscripts. Methods Four graders reviewed PubMed and Google Scholar for peer-reviewed studies. Studies were included if they used codified definitions of DR (e.g., billing codes). Data elements such as author names, publication year, purpose, data set type, and DR definitions were manually extracted. Each study was reviewed by ≥ 2 authors to validate inclusion eligibility. Quantitative analyses of the codified definitions were then performed to characterize the variation between DR cohort definitions. Main Outcome Measures Number of studies included and numeric counts of billing codes used to define codified cohorts. Results In total, 43 studies met the inclusion criteria. Half of the included studies used datasets based on structured EHR data (i.e., data registries, institutional EHR review), and half used claims data. All but 1 of the studies used billing codes such as the International Classification of Diseases 9th or 10th edition (ICD-9 or ICD-10), either alone or in addition to another terminology for defining disease. Of the 27 included studies that used ICD-9 and the 20 studies that used ICD-10 codes, the most common codes used pertained to the full spectrum of DR severity. Diabetic retinopathy complications (e.g., vitreous hemorrhage) were also used to define some DR cohorts. Conclusions Substantial variations exist among codified definitions for DR cohorts within retrospective studies. Variable definitions may limit generalizability and reproducibility of retrospective studies. More work is needed to standardize disease cohorts. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Jimmy S. Chen
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
- UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, California
| | - Ivan A. Copado
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
- UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, California
| | - Cecilia Vallejos
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
- UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, California
| | - Fritz Gerald P. Kalaw
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
- UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, California
| | - Priyanka Soe
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
- UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, California
| | - Cindy X. Cai
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Brian C. Toy
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Durga Borkar
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina
| | - Catherine Q. Sun
- F.I. Proctor Foundation, University of California San Francisco, San Francisco, California
- Department of Ophthalmology, University of California San Francisco, San Francisco, California
| | - Jessica G. Shantha
- F.I. Proctor Foundation, University of California San Francisco, San Francisco, California
- Department of Ophthalmology, University of California San Francisco, San Francisco, California
| | - Sally L. Baxter
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
- UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, California
| |
Collapse
|
7
|
Cai CX, Halfpenny W, Boland MV, Lehmann HP, Hribar M, Goetz KE, Baxter SL. Advancing Toward a Common Data Model in Ophthalmology: Gap Analysis of General Eye Examination Concepts to Standard Observational Medical Outcomes Partnership (OMOP) Concepts. OPHTHALMOLOGY SCIENCE 2023; 3:100391. [PMID: 38025162 PMCID: PMC10630664 DOI: 10.1016/j.xops.2023.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 12/01/2023]
Abstract
Purpose Evaluate the degree of concept coverage of the general eye examination in one widely used electronic health record (EHR) system using the Observational Health Data Sciences and Informatics Observational Medical Outcomes Partnership (OMOP) common data model (CDM). Design Study of data elements. Participants Not applicable. Methods Data elements (field names and predefined entry values) from the general eye examination in the Epic foundation system were mapped to OMOP concepts and analyzed. Each mapping was given a Health Level 7 equivalence designation-equal when the OMOP concept had the same meaning as the source EHR concept, wider when it was missing information, narrower when it was overly specific, and unmatched when there was no match. Initial mappings were reviewed by 2 graders. Intergrader agreement for equivalence designation was calculated using Cohen's kappa. Agreement on the mapped OMOP concept was calculated as a percentage of total mappable concepts. Discrepancies were discussed and a final consensus created. Quantitative analysis was performed on wider and unmatched concepts. Main Outcome Measures Gaps in OMOP concept coverage of EHR elements and intergrader agreement of mapped OMOP concepts. Results A total of 698 data elements (210 fields, 488 values) from the EHR were analyzed. The intergrader kappa on the equivalence designation was 0.88 (standard error 0.03, P < 0.001). There was a 96% agreement on the mapped OMOP concept. In the final consensus mapping, 25% (1% fields, 31% values) of the EHR to OMOP concept mappings were considered equal, 50% (27% fields, 60% values) wider, 4% (8% fields, 2% values) narrower, and 21% (52% fields, 8% values) unmatched. Of the wider mapped elements, 46% were missing the laterality specification, 24% had other missing attributes, and 30% had both issues. Wider and unmatched EHR elements could be found in all areas of the general eye examination. Conclusions Most data elements in the general eye examination could not be represented precisely using the OMOP CDM. Our work suggests multiple ways to improve the incorporation of important ophthalmology concepts in OMOP, including adding laterality to existing concepts. There exists a strong need to improve the coverage of ophthalmic concepts in source vocabularies so that the OMOP CDM can better accommodate vision research. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Cindy X. Cai
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - William Halfpenny
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Michael V. Boland
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Harold P. Lehmann
- Division of Health Sciences Informatics, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Biomedical Informatics and Data Science, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michelle Hribar
- Office of Data Science and Health Informatics, National Eye Institute, National Institute of Health, Bethesda, Maryland
- Department of Ophthalmology, Casey Eye Institute, Portland, Oregon
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
| | - Kerry E. Goetz
- Office of Data Science and Health Informatics, National Eye Institute, National Institute of Health, Bethesda, Maryland
| | - Sally L. Baxter
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
| |
Collapse
|
8
|
Tavakoli K, Kalaw FGP, Bhanvadia S, Hogarth M, Baxter SL. Concept Coverage Analysis of Ophthalmic Infections and Trauma among the Standardized Medical Terminologies SNOMED-CT, ICD-10-CM, and ICD-11. OPHTHALMOLOGY SCIENCE 2023; 3:100337. [PMID: 37449050 PMCID: PMC10336190 DOI: 10.1016/j.xops.2023.100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023]
Abstract
Purpose Widespread electronic health record adoption has generated a large volume of data and emphasized the need for standardized terminology to describe clinical concepts. Here, we undertook a systematic concept coverage analysis to determine the representation of clinical concepts in ophthalmic infection and ophthalmic trauma among standardized medical terminologies, including the Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT), the International Classification of Diseases (ICD) version 10 with clinical modifications (ICD-10-CM), and ICD version 11 (ICD-11). Design Extraction of concepts related to ophthalmic infection and ophthalmic trauma and structured search in terminology browsers. Data Sources The American Academy of Ophthalmology Basic and Clinical Science Course (BCSC), SNOMED-CT, and ICD-10-CM terminologies from the Observational Health Data Sciences and Informatics Athena browser, and the ICD-11 terminology browser. Methods Concepts pertaining to ophthalmic infection and ophthalmic trauma were extracted from the 2022 BCSC free text and index terms. We searched terminology browsers to identify corresponding codes and classified the extent of semantic alignment as equal, wide, narrow, or unmatched in each terminology. The overlap of equal concepts in each terminology was represented in a Venn diagram. Main Outcome Measures Proportions of clinical concepts with corresponding codes at various levels of semantic alignment. Results A total of 443 concepts were identified: 304 concepts related to ophthalmic infection and 139 concepts related to ophthalmic trauma. The SNOMED-CT had the highest proportion of equal coverage, with 82.0% (249 of 304) among concepts related to ophthalmic infection and 82.0% (115 of 139) among concepts related to ophthalmic trauma. Across all concepts, 28% (124 of 443) were classified as equal in ICD-10-CM and 52.8% (234 of 443) were classified as equal in ICD-11. Conclusions The SNOMED-CT had significantly better semantic alignment than ICD-10-CM and ICD-11 for ophthalmic infections and ophthalmic trauma. This demonstrates opportunity for continuing advancement of representation of ophthalmic concepts in standardized medical terminologies.
Collapse
Affiliation(s)
- Kiana Tavakoli
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Fritz Gerald P. Kalaw
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Sonali Bhanvadia
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Michael Hogarth
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Sally L. Baxter
- Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
9
|
Gu B, Sidhu S, Weinreb RN, Christopher M, Zangwill LM, Baxter SL. Review of Visualization Approaches in Deep Learning Models of Glaucoma. Asia Pac J Ophthalmol (Phila) 2023; 12:392-401. [PMID: 37523431 DOI: 10.1097/apo.0000000000000619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/11/2023] [Indexed: 08/02/2023] Open
Abstract
Glaucoma is a major cause of irreversible blindness worldwide. As glaucoma often presents without symptoms, early detection and intervention are important in delaying progression. Deep learning (DL) has emerged as a rapidly advancing tool to help achieve these objectives. In this narrative review, data types and visualization approaches for presenting model predictions, including models based on tabular data, functional data, and/or structural data, are summarized, and the importance of data source diversity for improving the utility and generalizability of DL models is explored. Examples of innovative approaches to understanding predictions of artificial intelligence (AI) models and alignment with clinicians are provided. In addition, methods to enhance the interpretability of clinical features from tabular data used to train AI models are investigated. Examples of published DL models that include interfaces to facilitate end-user engagement and minimize cognitive and time burdens are highlighted. The stages of integrating AI models into existing clinical workflows are reviewed, and challenges are discussed. Reviewing these approaches may help inform the generation of user-friendly interfaces that are successfully integrated into clinical information systems. This review details key principles regarding visualization approaches in DL models of glaucoma. The articles reviewed here focused on usability, explainability, and promotion of clinician trust to encourage wider adoption for clinical use. These studies demonstrate important progress in addressing visualization and explainability issues required for successful real-world implementation of DL models in glaucoma.
Collapse
Affiliation(s)
- Byoungyoung Gu
- Division of Ophthalmology Informatics and Data Science and Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, US
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, US
| | - Sophia Sidhu
- Division of Ophthalmology Informatics and Data Science and Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, US
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, US
| | - Robert N Weinreb
- Division of Ophthalmology Informatics and Data Science and Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, US
| | - Mark Christopher
- Division of Ophthalmology Informatics and Data Science and Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, US
| | - Linda M Zangwill
- Division of Ophthalmology Informatics and Data Science and Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, US
| | - Sally L Baxter
- Division of Ophthalmology Informatics and Data Science and Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, US
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, US
| |
Collapse
|
10
|
Baldeon-Calisto M, Wei Z, Abudalou S, Yilmaz Y, Gage K, Pow-Sang J, Balagurunathan Y. A multi-object deep neural network architecture to detect prostate anatomy in T2-weighted MRI: Performance evaluation. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1083245. [PMID: 39381408 PMCID: PMC11460296 DOI: 10.3389/fnume.2022.1083245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 10/10/2024]
Abstract
Prostate gland segmentation is the primary step to estimate gland volume, which aids in the prostate disease management. In this study, we present a 2D-3D convolutional neural network (CNN) ensemble that automatically segments the whole prostate gland along with the peripheral zone (PZ) (PPZ-SegNet) using a T2-weighted sequence (T2W) of Magnetic Resonance Imaging (MRI). The study used 4 different public data sets organized as Train #1 and Test #1 (independently derived from the same cohort), Test #2, Test #3 and Test #4. The prostate gland and the peripheral zone (PZ) anatomy were manually delineated with consensus read by a radiologist, except for Test #4 cohorts that had pre-marked glandular anatomy. A Bayesian hyperparameter optimization method was applied to construct the network model (PPZ-SegNet) with a training cohort (Train #1, n = 150) using a five-fold cross validation. The model evaluation was performed on an independent cohort of 283 T2W MRI prostate cases (Test #1 to #4) without any additional tuning. The data cohorts were derived from The Cancer Imaging Archives (TCIA): PROSTATEx Challenge, Prostatectomy, Repeatability studies and PROMISE12-Challenge. The segmentation performance was evaluated by computing the Dice similarity coefficient and Hausdorff distance between the estimated-deep-network identified regions and the radiologist-drawn annotations. The deep network architecture was able to segment the prostate gland anatomy with an average Dice score of 0.86 in Test #1 (n = 192), 0.79 in Test #2 (n = 26), 0.81 in Test #3 (n = 15), and 0.62 in Test #4 (n = 50). We also found the Dice coefficient improved with larger prostate volumes in 3 of the 4 test cohorts. The variation of the Dice scores from different cohorts of test images suggests the necessity of more diverse models that are inclusive of dependencies such as the gland sizes and others, which will enable us to develop a universal network for prostate and PZ segmentation. Our training and evaluation code can be accessed through the link: https://github.com/mariabaldeon/PPZ-SegNet.git.
Collapse
Affiliation(s)
- Maria Baldeon-Calisto
- Departamento de Ingeniería Industrial and Instituto de Innovación en Productividad y Logística CATENA-USFQ, Universidad San Francisco de Quito, Quito, Ecuador
| | - Zhouping Wei
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Shatha Abudalou
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Electrical Engineering, University of South Florida, Tampa, FL, United States
| | - Yasin Yilmaz
- Department of Electrical Engineering, University of South Florida, Tampa, FL, United States
| | - Kenneth Gage
- Diagnostic Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Julio Pow-Sang
- Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Yoganand Balagurunathan
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|